Python OpenCV 图像区域轮廓标记(框选各种小纸条)

学在前面

上篇 OpenCV 博客原计划完成一个 识别银行卡号的项目,但是写的过程中发现,技术储备不足,我无法在下述图片中,提取出卡号区域,也就无法进行后续的识别了,再次意识到了自己技术还不达标,继续学习。完不成,就实现其它学习项目。

轮廓识别实战

先看一下最终实现的效果,针对一张图片(该图片前景色和背景色差异较大),进行轮廓标记。

图片基本处理

import cv2 as cv

src = cv.imread("./demo.jpg")

gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# cv.imshow("src", src)

gray = cv.GaussianBlur(gray, (5, 5), 0)
edges = cv.Canny(gray, 70, 210)

cv.imshow("edged", edges)

转换成灰度图,高斯模糊去噪,Canny 边缘检测,这些都是图像处理的基本函数,使用方法已经在前文进行过相关学习。

运行上述代码之后,获取基本边缘数据。

轮廓检测

下面就是检测图像轮廓具体位置的代码了:

contours, hierarchy = cv.findContours(edges.copy(), cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
print(f"轮廓数量:{len(contours)}")

cv.findContours(edges, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE) 中,第二个参数使用的是 cv.RETR_LIST,该参数值表示检测所有轮廓,不建立等级关系,彼此独立。如果只想获取轮廓边缘信息,不关心是否嵌套在另一个轮廓之内,使用该参数值即可。

第三个参数使用的是 cv.CHAIN_APPROX_SIMPLE,表示压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需 4 个点来保存轮廓信息,这也是为了后面便于计算。

观察上图,可以发现最外侧的边缘面积是最大的,所以依据面积进行排序,依据其他值也可以,获取面积最大的轮廓。

contours = sorted(contours, key = cv.contourArea, reverse = True)[:3]

对轮廓进行简单绘制,获得下图效果。

cv.drawContours(src,contours,-1,(0,0,255),2)

遍历轮廓,计算轮廓近似

先看代码:

# 遍历轮廓
for c in contours:
	# 计算轮廓近似
	peri = cv.arcLength(c, True)
	approx = cv.approxPolyDP(c, 0.02 * peri, True)

一个新的函数 cv.arcLength,该函数的原型如下:

retval = cv2.arcLength(curve, closed)

该函数用于计算轮廓的周长。

下面的 cv.approxPolyDP 函数原型如下:

approxCurve = cv2.approxPolyDP(curve, epsilon, closed[, approxCurve])

函数参数如下:

  • curve:源图像的某个轮廓;
  • epsilon:距离值,表示多边形的轮廓接近实际轮廓的程度,值越小,越精确;
  • closed:轮廓是否闭合。

最重要的参数就是 epsilon 简单记忆为:该值越小,得到的多边形角点越多,轮廓越接近实际轮廓,该参数是一个准确度参数。

该函数返回值为轮廓近似多边形的角点。

绘制轮廓

最后判断,当上文返回的角点为 4 的时候,提取轮廓,代码如下:

# 遍历轮廓
for c in contours:
	# 计算轮廓近似
	peri = cv.arcLength(c, True)
	approx = cv.approxPolyDP(c, 0.02 * peri, True)

	# 当恰好是 4 个角点的时候,获取轮廓。
	if len(approx) == 4:
		screen_cnt = approx
		break

# 结果显示
cv.drawContours(src, [screen_cnt], -1, (0, 0, 255), 2)

更换图片,进行再次轮廓检测,注意修改轮廓近似部分代码即可。

# 遍历轮廓
for c in contours:
  # 计算轮廓近似

  approx = cv.approxPolyDP(c, 30, True)

  if len(approx) == 4:
    screen_cnt = approx
    break

到此这篇关于Python OpenCV 图像区域轮廓标记(框选各种小纸条)的文章就介绍到这了,更多相关Python OpenCV区域轮廓标记内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Opencv提取连通区域轮廓的方法

    本文实例为大家分享了Opencv提取连通区域轮廓的具体代码,供大家参考,具体内容如下 在进行图像分割后,可能需要对感兴趣的目标区域进行提取,比较常用的方法是计算轮廓. 通过轮廓可以获得目标的一些信息: (1)目标位置 (2)目标大小(即面积) (3)目标形状(轮廓矩) 当然,轮廓不一定代表希望目标区域,阈值分割时可能造成一部分信息丢失,因此可以计算轮廓的质心坐标,再进行漫水填充. 程序中有寻找质心+填充,但效果不好,因此就不放填充后的图了. 实验结果: #include "opencv2/img

  • Python OpenCV 图像区域轮廓标记(框选各种小纸条)

    学在前面 上篇 OpenCV 博客原计划完成一个 识别银行卡号的项目,但是写的过程中发现,技术储备不足,我无法在下述图片中,提取出卡号区域,也就无法进行后续的识别了,再次意识到了自己技术还不达标,继续学习.完不成,就实现其它学习项目. 轮廓识别实战 先看一下最终实现的效果,针对一张图片(该图片前景色和背景色差异较大),进行轮廓标记. 图片基本处理 import cv2 as cv src = cv.imread("./demo.jpg") gray = cv.cvtColor(src,

  • python计算机视觉opencv图像金字塔轮廓及模板匹配

    目录 1.图像金字塔 ①高斯金字塔 ②拉普拉斯金字塔 2.图像轮廓 ①寻找轮廓 ②轮廓特征 ③轮廓绘制 3.模板匹配 ①模板匹配 ②匹配框线绘制 ③多对象匹配 4.直方图统计 ①直方图绘制 ②直方图统计 ③直方图的mask操作 ④直方图均衡化 5.傅里叶变换 1.图像金字塔 ①高斯金字塔 向下采样,数据会越来越少,减少的方式是:将偶数行和列删除 向上采样,数据会越来越多,将图像在每个方向上扩大为原来的两倍,新增的行和列用0来填充.使用先前同样的内核与放大后的图像卷积,获得近似值. 上采样之后,图

  • python OpenCV图像金字塔

    目录 1.图像金字塔理论基础 2.向下取样函数及使用 3.向上取样函数及使用 4.采样可逆性研究 5.拉普拉斯金字塔 6.图像轮廓介绍 轮廓近似 1.图像金字塔理论基础 图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构.一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合.其通过梯次向下采样获得,直到达到某个终止条件才停止采样.我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低.那我们为什么要做图像金字塔呢?这

  • 如何使用Python OpenCV提取物体轮廓详解

    通常提取物体的轮廓时,图像都存在噪声,提取效果并不理想.如提取下图的轮廓时, 提取代码: import cv2 img = cv2.imread("mouse.png") cv2.imshow("origin",img) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,binary = cv2.threshold(gray,128,255,cv2.THRESH_BINARY) cv2.imshow("bina

  • python opencv 图像边框(填充)添加及图像混合的实现方法(末尾实现类似幻灯片渐变的效果)

    图像边框的实现 图像边框设计的主要函数 cv.copyMakeBorder()--实现边框填充 主要参数如下: 参数一:源图像--如:读取的img 参数二--参数五分别是:上下左右边的宽度--单位:像素 参数六:边框类型: cv.BORDER_CONSTANT--cv.BORDER_REPLICATE--cv.BORDER_REFLECT--cv.BORDER_WRAP--cv.BORDER_REFLECT_101--cv.BORDER_TRANSPARENT--cv.BORDER_REFLEC

  • Python+OpenCV图像处理——实现轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def contours_demo(image): dst = cv.GaussianBlur(image, (3, 3), 0) #高斯模糊去噪 gray = cv.cvtColor(dst, cv.COLOR_RGB2GRAY) ret, binary = cv.threshold(gray, 0, 25

  • Python OpenCV 图像平移的实现示例

    每次学习新东西的时候,橡皮擦都是去海量检索,然后找到适合自己理解的部分. 再将其拼凑成一个小的系统,争取对该内容有初步理解. 今天这 1 个小时,核心要学习的是图像的平移,在电脑上随便打开一张图片,实现移动都非常简单,但是在代码中,出现了一些新的概念. 检索 OpenCV 图像平移相关资料时,碰到的第一个新概念是就是 仿射变换. 每次看到这样子的数学名字,必然心中一凉,做为一个数学小白,又要瑟瑟发抖了. 百度一下,看看百科中是如何介绍的. 看过上图中的一些相关简介之后,对于这个概念也并没有太深刻

  • 详解python opencv图像混合算术运算

    目录 图片相加 cv2.add() 按位运算 图片相加 cv2.add() 要叠加两张图片,可以用 cv2.add() 函数,相加两幅图片的形状(高度 / 宽度 / 通道数)必须相同.         numpy中可以直接用res = img + img1相加,但这两者的结果并不相同(看下边代码):         add()两个图片进行加和,大于255的使用255计数.         numpy会对结果取256(相当于255+1)的模: import numpy as np import c

  • python opencv图像的高通滤波和低通滤波的示例代码

    目录 前言 完整代码 低通滤波 高通滤波 结果展示 低通滤波 高通滤波 前言 上一章我们说明了如何将图像机娘傅里叶变换,将图像由时域变换成频域,并将低频移动至图像中心.那么将低频移动中心后,就可以将图像的低频和高频分开,从而进行低通滤波和高通滤波的处理. 完整代码 低通滤波 import cv2 import numpy as np import matplotlib.pyplot as plt # cv2.imread()在读取图像的时候,默认的是读取成RGB图像,cv2.IMREAD_GRA

  • python opencv 图像尺寸变换方法

    利用Python OpenCV中的 cv.Resize(源,目标,变换方法)就可以实现变换为想要的尺寸了 源文件:就不用说了 目标:你可以对图像进行倍数的放大和缩小 也可以直接的输入尺寸大小 变换的方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值

随机推荐