tensorflow中的梯度求解及梯度裁剪操作

1. tensorflow中梯度求解的几种方式

1.1 tf.gradients

tf.gradients(
    ys,
    xs,
    grad_ys=None,
    name='gradients',
    colocate_gradients_with_ops=False,
    gate_gradients=False,
    aggregation_method=None,
    stop_gradients=None,
    unconnected_gradients=tf.UnconnectedGradients.NONE
)

计算ys关于xs的梯度,tf.gradients返回的结果是一个长度为len(xs)的tensor列表list,例如

tf.gradients(y, [x1, x2, x3]返回[dy/dx1, dy/dx2, dy/dx3]

当y与x无关时,即graph无x到y的路径, 则求y关于x的梯度时返回[None];参数stop_gradients指定的变量对当前梯度求解而言, 梯度求解将止于这些变量。

a = tf.constant(0.)
b = 2 * a
g = tf.gradients(a + b, [a, b], stop_gradients=[a, b]) #梯度计算不再追溯a,b之前的变量

输出:

In: sess.run(g)

out:[1.0, 1.0]

如果不设置stop_gradients参数则反向传播梯度计算将追溯到最开始的值a,输出结果为:

In : sess.run(g)

Out: [3.0, 1.0]

1.2 optimizer.compute_gradients

compute_gradients(
    loss,
    var_list=None,
    gate_gradients=GATE_OP,
    aggregation_method=None,
    colocate_gradients_with_ops=False,
    grad_loss=None
)

optimizer.compute_gradients是tf.gradients的封装,作用相同,但是tfgradients只返回梯度,compute_gradients返回梯度和可导的变量;tf.compute_gradients是optimizer.minimize()的第一步,optimizer.compute_gradients返回一个[(gradient, variable),…]的元组列表,其中gradient是tensor。

直观上,optimizer.compute_gradients只比tf.gradients多了一个variable输出。

optimizer = tf.train.GradientDescentOptimizer(learning_rate = 1.0)
self.train_op = optimizer.minimize(self.cost)
sess.run([train_op], feed_dict={x:data, y:labels})

在这个过程中,调用minimize方法的时候,底层进行的工作包括:

(1) 使用tf.optimizer.compute_gradients计算trainable_variables 集合中所有参数的梯度

(2) 用optimizer.apply_gradients来更新计算得到的梯度对应的变量

上面代码等价于下面代码

optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
grads_and_vars = optimizer.compute_gradients(loss)
train_op = optimizer.apply_gradients(grads_and_vars)

1.3 tf.stop_gradient

tf.stop_gradient(
    input,
    name=None
)

tf.stop_gradient阻止input的变量参与梯度计算,即在梯度计算的过程中屏蔽input之前的graph。

返回:关于input的梯度

2. 梯度裁剪

如果我们希望对梯度进行截断,那么就要自己计算出梯度,然后进行clip,最后应用到变量上,代码如下所示,接下来我们一一介绍其中的主要步骤

#return a list of trainable variable in you model
params = tf.trainable_variables()

#create an optimizer
opt = tf.train.GradientDescentOptimizer(self.learning_rate)

#compute gradients for params
gradients = tf.gradients(loss, params)

#process gradients
clipped_gradients, norm = tf.clip_by_global_norm(gradients,max_gradient_norm)

train_op = opt.apply_gradients(zip(clipped_gradients, params)))

2.1 tf.clip_by_global_norm介绍

tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None)

t_list 表示梯度张量

clip_norm是截取的比率

在应用这个函数之后,t_list[i]的更新公示变为:

global_norm = sqrt(sum(l2norm(t)**2 for t in t_list))
t_list[i] = t_list[i] * clip_norm / max(global_norm, clip_norm)

也就是分为两步:

(1) 计算所有梯度的平方和global_norm

(2) 如果梯度平方和 global_norm 超过我们指定的clip_norm,那么就对梯度进行缩放;否则就按照原本的计算结果

梯度裁剪实例2

loss = w*x*x
optimizer = tf.train.GradientDescentOptimizer(0.1)
grads_and_vars = optimizer.compute_gradients(loss,[w,x])
grads = tf.gradients(loss,[w,x])
# 修正梯度
for i,(gradient,var) in enumerate(grads_and_vars):
    if gradient is not None:
        grads_and_vars[i] = (tf.clip_by_norm(gradient,5),var)
train_op = optimizer.apply_gradients(grads_and_vars)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(grads_and_vars))
     # 梯度修正前[(9.0, 2.0), (12.0, 3.0)];梯度修正后 ,[(5.0, 2.0), (5.0, 3.0)]
    print(sess.run(grads))  #[9.0, 12.0],
    print(train_op)

补充:tensorflow框架中几种计算梯度的方式

1. tf.gradients

tf.gradients(
    ys,
    xs,
    grad_ys=None,
    name='gradients',
    colocate_gradients_with_ops=False,
    gate_gradients=False,
    aggregation_method=None,
    stop_gradients=None,
    unconnected_gradients=tf.UnconnectedGradients.NONE
)

计算ys关于xs的梯度,tf.gradients返回的结果是一个长度为len(xs)的Tensor列表list,每个张量为sum(dy/dx),即ys关于xs的导数。

例子:

tf.gradients(y, [x1, x2, x3]返回[dy/dx1, dy/dx2, dy/dx3]

当y与x无关时,即graph无x到y的路径, 则求y关于x的梯度时返回[None]

参数stop_gradients指定的变量对当前梯度求解而言, 梯度求解将止于这些变量。

实例:

a = tf.constant(0.)
b = 2 * a
g = tf.gradients(a + b, [a, b], stop_gradients=[a, b]) #梯度计算不再追溯a,b之前的变量

输出:

In: sess.run(g)

out:[1.0, 1.0]

如果不设置stop_gradients参数则反向传播梯度计算将追溯到最开始的值a,输出结果为:

In : sess.run(g)

Out: [3.0, 1.0]

2. optimizer.compute_gradients

compute_gradients(
    loss,
    var_list=None,
    gate_gradients=GATE_OP,
    aggregation_method=None,
    colocate_gradients_with_ops=False,
    grad_loss=None
)

optimizer.compute_gradients是tf.gradients的封装1.

是optimizer.minimize()的第一步,返回(gradient, variable)的列表,其中gradient是tensor。

直观上,optimizer.compute_gradients只比tf.gradients多了一个variable输出。

3. tf.stop_gradient

tf.stop_gradient(
    input,
    name=None
)

tf.stop_gradient阻止input的变量参与梯度计算,即在梯度计算的过程中屏蔽input之前的graph。

返回:关于input的梯度

应用:

1、EM算法,其中M步骤不应涉及通过E步骤的输出的反向传播。

2、Boltzmann机器的对比散度训练,在区分能量函数时,训练不得反向传播通过模型生成样本的图形。

3、对抗性训练,通过对抗性示例生成过程不会发生反向训练。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • TensorFlow的自动求导原理分析

    原理: TensorFlow使用的求导方法称为自动微分(Automatic Differentiation),它既不是符号求导也不是数值求导,而类似于将两者结合的产物. 最基本的原理就是链式法则,关键思想是在基本操作(op)的水平上应用符号求导,并保持中间结果(grad). 基本操作的符号求导定义在\tensorflow\python\ops\math_grad.py文件中,这个文件中的所有函数都用RegisterGradient装饰器包装了起来,这些函数都接受两个参数op和grad,参数op是

  • 使用tensorflow 实现反向传播求导

    看代码吧~ X=tf.constant([-1,-2],dtype=tf.float32) w=tf.Variable([2.,3.]) truth=[3.,3.] Y=w*X # cost=tf.reduce_sum(tf.reduce_sum(Y*truth)/(tf.sqrt(tf.reduce_sum(tf.square(Y)))*tf.sqrt(tf.reduce_sum(tf.square(truth))))) cost=Y[1]*Y optimizer = tf.train.Gra

  • Tensorflow 如何从checkpoint文件中加载变量名和变量值

    假设你已经经过上千次的迭代,并且得到了以下模型: 则从这些checkpoint文件中加载变量名和变量值代码如下: model_dir = './ckpt-182802' import tensorflow as tf from tensorflow.python import pywrap_tensorflow reader = pywrap_tensorflow.NewCheckpointReader(model_dir) var_to_shape_map = reader.get_varia

  • 解决tensorflow 与keras 混用之坑

    在使用tensorflow与keras混用是model.save 是正常的但是在load_model的时候报错了在这里mark 一下 其中错误为:TypeError: tuple indices must be integers, not list 再一一番百度后无结果,上谷歌后找到了类似的问题.但是是一对鸟文不知道什么东西(翻译后发现是俄文).后来谷歌翻译了一下找到了解决方法.故将原始问题文章贴上来警示一下 原训练代码 from tensorflow.python.keras.preproce

  • Python3安装tensorflow及配置过程

    简介 TensorFlow 是一个端到端开源机器学习平台.它拥有一个全面而灵活的生态系统,其中包含各种工具.库和社区资源,可助力研究人员推动先进机器学习技术的发展,并使开发者能够轻松地构建和部署由机器学习提供支持的应用.那它能干什么用呢? 轻松地构建模型:在即刻执行环境中使用 Keras 等直观的高阶 API 轻松地构建和训练机器学习模型,该环境使我们能够快速迭代模型并轻松地调试模型. 随时随地进行可靠的机器学习生产:无论您使用哪种语言,都可以在云端.本地.浏览器中或设备上轻松地训练和部署模型.

  • tensorflow中的梯度求解及梯度裁剪操作

    1. tensorflow中梯度求解的几种方式 1.1 tf.gradients tf.gradients( ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None, stop_gradients=None, unconnected_gradients=tf.UnconnectedGradients.NONE )

  • 浅谈tensorflow 中的图片读取和裁剪方式

    一 方式1: skimage from skimage import data, io, transform, color import matplotlib.pyplot as plt # io.imread 读出的图片格式是uint8,value是numpy array 类型. image = data.coffee() image = io.imread(dir) plt.imshow(image) plt.show() io.save('1.jpg',image) #保存图像 image

  • 在Tensorflow中实现梯度下降法更新参数值

    我就废话不多说了,直接上代码吧! tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) TensorFlow经过使用梯度下降法对损失函数中的变量进行修改值,默认修改tf.Variable(tf.zeros([784,10])) 为Variable的参数. train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=

  • TensorFlow梯度求解tf.gradients实例

    我就废话不多说了,直接上代码吧! import tensorflow as tf w1 = tf.Variable([[1,2]]) w2 = tf.Variable([[3,4]]) res = tf.matmul(w1, [[2],[1]]) grads = tf.gradients(res,[w1]) with tf.Session() as sess: tf.global_variables_initializer().run() print sess.run(res) print se

  • 基于TensorFlow中自定义梯度的2种方式

    前言 在深度学习中,有时候我们需要对某些节点的梯度进行一些定制,特别是该节点操作不可导(比如阶梯除法如 ),如果实在需要对这个节点进行操作,而且希望其可以反向传播,那么就需要对其进行自定义反向传播时的梯度.在有些场景,如[2]中介绍到的梯度反转(gradient inverse)中,就必须在某层节点对反向传播的梯度进行反转,也就是需要更改正常的梯度传播过程,如下图的 所示. 在tensorflow中有若干可以实现定制梯度的方法,这里介绍两种. 1. 重写梯度法 重写梯度法指的是通过tensorf

  • Pytorch反向传播中的细节-计算梯度时的默认累加操作

    Pytorch反向传播计算梯度默认累加 今天学习pytorch实现简单的线性回归,发现了pytorch的反向传播时计算梯度采用的累加机制, 于是百度来一下,好多博客都说了累加机制,但是好多都没有说明这个累加机制到底会有啥影响, 所以我趁着自己练习的一个例子正好直观的看一下以及如何解决: pytorch实现线性回归 先附上试验代码来感受一下: torch.manual_seed(6) lr = 0.01 # 学习率 result = [] # 创建训练数据 x = torch.rand(20, 1

  • Tensorflow中的图(tf.Graph)和会话(tf.Session)的实现

    Tensorflow编程系统 Tensorflow工具或者说深度学习本身就是一个连贯紧密的系统.一般的系统是一个自治独立的.能实现复杂功能的整体.系统的主要任务是对输入进行处理,以得到想要的输出结果.我们之前见过的很多系统都是线性的,就像汽车生产工厂的流水线一样,输入->系统处理->输出.系统内部由很多单一的基本部件构成,这些单一部件具有特定的功能,且需要稳定的特性:系统设计者通过特殊的连接方式,让这些简单部件进行连接,以使它们之间可以进行数据交流和信息互换,来达到相互配合而完成具体工作的目的

  • Tensorflow中k.gradients()和tf.stop_gradient()用法说明

    上周在实验室开荒某个代码,看到中间这么一段,对Tensorflow中的stop_gradient()还不熟悉,特此周末进行重新并总结. y = xx + K.stop_gradient(rounded - xx) 这代码最终调用位置在tensoflow.python.ops.gen_array_ops.stop_gradient(input, name=None),关于这段代码为什么这样写的意义在文末给出. [stop_gradient()意义] 用stop_gradient生成损失函数w.r.

  • 在Tensorflow中实现leakyRelu操作详解(高效)

    从github上转来,实在是厉害的想法,什么时候自己也能写出这种精妙的代码就好了 原地址:简易高效的LeakyReLu实现 代码如下: 我做了些改进,因为实在tensorflow中使用,就将原来的abs()函数替换成了tf.abs() import tensorflow as tf def LeakyRelu(x, leak=0.2, name="LeakyRelu"): with tf.variable_scope(name): f1 = 0.5 * (1 + leak) f2 =

  • Tensorflow中使用cpu和gpu有什么区别

    目录 使用cpu和gpu的区别 一些术语的比较(tensorflow和pytorch/cpu和gpu/) tensorflow和pytorch cpu和gpu cuda 使用cpu和gpu的区别 在Tensorflow中使用gpu和cpu是有很大的差别的.在小数据集的情况下,cpu和gpu的性能差别不大. 不过在大数据集的情况下,cpu的时间显著增加,而gpu变化并不明显. 不过,我的笔记本电脑的风扇终于全功率运行了. import tensorflow as tf import timeit

随机推荐