pytorch 归一化与反归一化实例

ToTensor中就有转到0-1之间了。

# -*- coding:utf-8 -*-

import time

import torch

from torchvision import transforms

import cv2

transform_val_list = [
  # transforms.Resize(size=(160, 160), interpolation=3), # Image.BICUBIC
  transforms.ToTensor(),
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]

trans_compose = transforms.Compose(transform_val_list)

if __name__ == '__main__':
  std= [0.229, 0.224, 0.225]
  mean=[0.485, 0.456, 0.406]
  path="d:/2.jpg"

  data=cv2.imread(path)
  t1 = time.time()
  x = trans_compose(data)
  x[0]=x[0]*std[0]+mean[0]
  x[1]=x[1]*std[1]+mean[1]
  x[2]=x[2].mul(std[2])+mean[2]

  img = x.mul(255).byte()
  img = img.numpy().transpose((1, 2, 0))
  # torch.set_num_threads(3)
  # img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
  cv2.imshow("sdf", img)
  cv2.waitKeyEx()

这个测试时间:归一化与反归一化都需要7ms左右,

但是在多路摄像头中,可能比较慢。

 std= [0.229, 0.224, 0.225]
  mean=[0.485, 0.456, 0.406]
  path="d:/2.jpg"

  data=cv2.imread(path)
  t1 = time.time()
  start = time.time()
  x = trans_compose(data)
  print("gui", time.time() - start)
  for i in range(10):
    start=time.time()

    for i in range(len(mean)):
      # x[i]=x[i]*std[i]+mean[i]
      x[i]=x[i].mul(std[i])+mean[i]
    img = x.mul(255).byte()
    img = img.numpy().transpose((1, 2, 0))

    print("fan",time.time()-start)
  # torch.set_num_threads(3)
  # img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
  cv2.imshow("sdf", img)
  cv2.waitKeyEx()

以上这篇pytorch 归一化与反归一化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python数据归一化及三种方法详解

    数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是三种常用的归一化方法: min-max标准化(Min-Max Normalization) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 , 1]之间.转换函数如下: 其中max为样本数据的最大值,

  • 浅谈利用numpy对矩阵进行归一化处理的方法

    本文不讲归一化原理,只介绍实现(事实上看了代码就会懂原理),代码如下: def Normalize(data): m = np.mean(data) mx = max(data) mn = min(data) return [(float(i) - m) / (mx - mn) for i in data] 代码只有5行并不复杂,但是需要注意的一点是一定要将计算的均值以及矩阵的最大.最小值存为变量放到循环里,如果直接在循环里计算对应的值会造成归一化特别慢,笔者之前有过深切的酸爽体验-. 以上这篇

  • 详解python实现数据归一化处理的方式:(0,1)标准化

    在机器学习过程中,对数据的处理过程中,常常需要对数据进行归一化处理,下面介绍(0, 1)标准化的方式,简单的说,其功能就是将预处理的数据的数值范围按一定关系"压缩"到(0,1)的范围类. 通常(0, 1)标注化处理的公式为: 即将样本点的数值减去最小值,再除以样本点数值最大与最小的差,原理公式就是这么基础. 下面看看使用python语言来编程实现吧 import numpy as np import matplotlib.pyplot as plt def noramlization(

  • 使用sklearn进行对数据标准化、归一化以及将数据还原的方法

    在对模型训练时,为了让模型尽快收敛,一件常做的事情就是对数据进行预处理. 这里通过使用sklearn.preprocess模块进行处理. 一.标准化和归一化的区别 归一化其实就是标准化的一种方式,只不过归一化是将数据映射到了[0,1]这个区间中. 标准化则是将数据按照比例缩放,使之放到一个特定区间中.标准化后的数据的均值=0,标准差=1,因而标准化的数据可正可负. 二.使用sklearn进行标准化和标准化还原 原理: 即先求出全部数据的均值和方差,再进行计算. 最后的结果均值为0,方差是1,从公

  • pytorch 归一化与反归一化实例

    ToTensor中就有转到0-1之间了. # -*- coding:utf-8 -*- import time import torch from torchvision import transforms import cv2 transform_val_list = [ # transforms.Resize(size=(160, 160), interpolation=3), # Image.BICUBIC transforms.ToTensor(), transforms.Normali

  • pandas归一化与反归一化操作实现

    import numpy as np import pandas as pd import matplotlib.pylab as plt if __name__ == '__main__': """ 原数据 """ df = pd.DataFrame({'A': [10, 20, 30], 'B': [1, 2, 6]}) # 图表 plt.plot(df) plt.show() """ 归一化 "&qu

  • 使用PyTorch训练一个图像分类器实例

    如下所示: import torch import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np print("torch: %s" % torch.__version__) print("tortorchvisionch: %s" % torchvision.__version__) print(&

  • pytorch 输出中间层特征的实例

    pytorch 输出中间层特征: tensorflow输出中间特征,2种方式: 1. 保存全部模型(包括结构)时,需要之前先add_to_collection 或者 用slim模块下的end_points 2. 只保存模型参数时,可以读取网络结构,然后按照对应的中间层输出即可. but:Pytorch 论坛给出的答案并不好用,无论是hooks,还是重建网络并去掉某些层,这些方法都不好用(在我看来). 我们可以在创建网络class时,在forward时加入一个dict 或者 list,dict是将

  • Pytorch之保存读取模型实例

    pytorch保存数据 pytorch保存数据的格式为.t7文件或者.pth文件,t7文件是沿用torch7中读取模型权重的方式.而pth文件是python中存储文件的常用格式.而在keras中则是使用.h5文件. # 保存模型示例代码 print('===> Saving models...') state = { 'state': model.state_dict(), 'epoch': epoch # 将epoch一并保存 } if not os.path.isdir('checkpoin

  • pytorch中的transforms模块实例详解

    pytorch中的transforms模块中包含了很多种对图像数据进行变换的函数,这些都是在我们进行图像数据读入步骤中必不可少的,下面我们讲解几种最常用的函数,详细的内容还请参考pytorch官方文档(放在文末). data_transforms = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms

  • pytorch标签转onehot形式实例

    代码: import torch class_num = 10 batch_size = 4 label = torch.LongTensor(batch_size, 1).random_() % class_num print(label.size()) one_hot = torch.zeros(batch_size, class_num).scatter_(1, label, 1) print(one_hot) 输出: torch.Size([4, 1]) tensor([[0., 0.,

  • Pytorch Tensor的统计属性实例讲解

    1. 范数 示例代码: import torch a = torch.full([8], 1) b = a.reshape([2, 4]) c = a.reshape([2, 2, 2]) # 求L1范数(所有元素绝对值求和) print(a.norm(1), b.norm(1), c.norm(1)) # 求L2范数(所有元素的平方和再开根号) print(a.norm(2), b.norm(2), c.norm(2)) # 在b的1号维度上求L1范数 print(b.norm(1, dim=

  • pytorch动态网络以及权重共享实例

    pytorch 动态网络+权值共享 pytorch以动态图著称,下面以一个栗子来实现动态网络和权值共享技术: # -*- coding: utf-8 -*- import random import torch class DynamicNet(torch.nn.Module): def __init__(self, D_in, H, D_out): """ 这里构造了几个向前传播过程中用到的线性函数 """ super(DynamicNet,

  • pytorch 模拟关系拟合——回归实例

    本次用 pytroch 来实现一个简单的回归分析,也借此机会来熟悉 pytorch 的一些基本操作. 1. 建立数据集 import torch from torch.autograd import Variable import matplotlib.pyplot as plt # torch.linspace(-1,1,100)表示返回一个一维张量,包含在区间 -1到1 上均匀间隔的100个点: # torch.unsqueeze(input,dim=1)表示转换维度 x = torch.u

随机推荐