C++17中的std::optional的具体使用

直入主题

本篇之中,仅仅述及 std::optional ,其它和 variant 相关的话题以后再说吧。

std::optional 也划入 variant 类别中,其实它还是谈不上可称为变体类型的,但新版本中的三大件(optional,any and variant)也可以归一类无妨。

C++17 之前

在 C 时代以及早期 C++ 时代,语法层面支持的 nullable 类型可以采用指针方式: T* ,如果指针为 NULL (C++11 之后则使用 nullptr ) 就表示无值状态(empty value)。

typedef template <typename T> T* NullableT;
NullableT<int> pInt = nullptr;

为了更好地使用这个类别而不是总是采用指针,需要对其进行封装。下面给出一个示例(但并未完善):

// 使用 C++11 语法
namespace cmdr {
 template<typename T>
 class Nullable {
 public:
  Nullable() = default;

  virtual ~Nullable(){ if (_value) delete _value; }

 public:
  Nullable(const Nullable &o) { _copy(o); }

  Nullable &operator=(const Nullable &o) {
   _copy(o);
   return *this;
  }

  Nullable &operator=(const T &o) {
   this->_value = o;
   return *this;
  }

 private:
  void _copy(const Nullable &o) {
   this->_value = o._value;
  }

 public:
  T &val() { return *_value; }

  const T &val() const { return *_value; }

  void val(T &&v) {
   if (!_value)
    _value = new T;
   (*_value) = v;
  }

  explicit operator T() const { return val(); }

  explicit operator T() { return val(); }

  // operator ->
  // operator *

  [[nodiscard]] bool is_null() const { return !_value; }

 private:
  T *_value{nullptr};
 };// class Nullable<T>
}

所以,这个 Nullable<T> 现在很像 C# 或者 Kotlin 中的 T?。使用它和直接使用 T 差不多,只是隐含着 new/delete 的额外开销,当然我们也可以采用别的实现方案例如增加一个额外的 bool 成员变量来表示是否尚未赋值,这样就可以去掉 heap allocating 开销,孰优孰劣也未必可以计较。

std::optional in C++17

std::optional 类似于 Nullable<T> 和 std::variant 的联合体,它管理一个 Nullable 变体类型。

但它和 Nullable<T> 不同之处在于,optional 实现的更为精炼和全面:Nullable 是刚才我手写的,甚至没经过编译器检验,也缺乏大多数重载以及构造特性。optional 在构造对象的开销方面比 Nullable 好无数倍,因为它能够利用原位构造特性使得自身的开销趋向于 0 而只需要 T 对象的构造开销,而 Nullable 为了表达出早期(C++03)的状态直接采用了 new/delete 来简化代码。

如果想要改进前文中 Nullable<T> 的实现,使其和 optional 一样地完善,则需要关注如下几点:

  • 去掉 new / delete 机制,考虑采用一个空结构来表达尚未赋值的状态:事实上,optional 使用了 std::nullopt_t 来表述该状态。
  • 完善操作符重载
  • 加入 swap 特性支持
  • 加入原位构造特性支持

optional 和 variant 也不同,variant 是提前确定好一组可选的类型,你只能在这一组类型中进行变换,而 optional 是具体化到一个特定类型的,你不能动态地将不同类型的值赋予 optional 的变量。

optional 从语法意义上来说,就是一个完美版的 Nullable<T> ,你可以将其和 Kotlin 的可空类型等价。

使用

我们可以以多种方式来构造、声明 optional 的变量,最原始的方式是在构造参数时传入值对象:

std::optional<int> opt_int(72);
std::optional opt_int2(8);
std::optional opt_int2(std::string("a string"));

使用 std::make_optional<T> 是比较 meaningful 的一种,而且也是更整洁的原位构造:

auto opt_double = std::make_optional(3.14);
auto opt_complex = std::make_optional<std::complex<double>>(3.0, 4.0);
std::optional<std::complex<double>> opt_complex2{std::in_place, 3.0, 4.0};

使用原位构造

// constructing a string in-place
std::optional<std::string> o1(std::in_place, "a string");
// with a repeated spaces
std::optional<std::string> o1(std::in_place, 8, ' ');

has_value 可以用于测试有没有值,是否尚未赋值:

auto x = std::make_optional(9);
std::optional<int> y;
assert(x.hash_value() == true);
assert(y.hash_value() == false);

std::cout << x.value();
std::cout << y.value_or(0);

value() 和 value_or() 是抽出 T 值的方法,含义明显,不必赘述。当无值或者类型不能转换时,value() 有可能抛出异常 std::bad_optional_access,如果想要避免则可以使用 value_or。

对于复合对象来说,原位构造方式赋值 emplace 也是可用的。同样地也可以善加利用 swap。

应用

optional 相当于一个全类型的 Nullable 类型,所以在运用工厂模式时将其作为创建器的返回值将会是非常适合的选择,好过无包装的 T* 或者智能指针。因为当你使用智能指针的工厂模式时,创建器只能创建基于一个公共基类的实例,所以受制较多。但采用 optional 时则不会收到基类指针的限制。

下面是来自于 cppreference 的示例:

#include <string>
#include <functional>
#include <iostream>
#include <optional>

// optional 可用作可能失败的工厂的返回类型
std::optional<std::string> create(bool b) {
 if(b)
  return "Godzilla";
 else
  return {};
}

// 能用 std::nullopt 创建任何(空的) std::optional
auto create2(bool b) {
 return b ? std::optional<std::string>{"Godzilla"} : std::nullopt;
}

// std::reference_wrapper 可用于返回引用
auto create_ref(bool b) {
 static std::string value = "Godzilla";
 return b ? std::optional<std::reference_wrapper<std::string>>{value}
    : std::nullopt;
}

int main()
{
 std::cout << "create(false) returned "
    << create(false).value_or("empty") << '\n';

 // 返回 optional 的工厂函数可用作 while 和 if 的条件
 if (auto str = create2(true)) {
  std::cout << "create2(true) returned " << *str << '\n';
 }

 if (auto str = create_ref(true)) {
  // 用 get() 访问 reference_wrapper 的值
  std::cout << "create_ref(true) returned " << str->get() << '\n';
  str->get() = "Mothra";
  std::cout << "modifying it changed it to " << str->get() << '\n';
 }
}

// Output
create(false) returned empty
create2(true) returned Godzilla
create_ref(true) returned Godzilla
modifying it changed it to Mothra

此外,在搜索算法中返回搜索结果或者返回没找到状态,可以不必使用 bool 加上 search::result 了,可以直接返回 std::optional<search::result>。

这样的设计策略完全可以产生深远的影响。从有洁癖的我的心态出发,大多数类库都可以据此重新改写,从而得到更简练、更 meaningful 的接口。而更富有表达力的接口反过来也能影响到算法的实现部分,它们将会变得更易读,更可维护。

那些 Machine Learning 算法,写出来如同天书一般,但借助新的手段重构的话,有望可以增进理解程度。

所以,像 C# 具有了 Nullable 类型几十年(稍稍有点夸张)了之后,C++17 才正式支持 std::optional 实在是相当操蛋的一件事情。

和 Kotlin 比较Permalink

和 Kotlin 相比较的话,现阶段的 optional 不但冗长,而且缺乏一大组闭包工具(let,apply,类型诊断,空安全)。多数人将这些工具称作语法糖,但我更希望它们被视为必需品。下面是一段 Kotlin 的代码块,可以看出整体上它们的简练性,而 std::optional 嘛,实际上还差得远,看起来也不可能赶得上了:

if (obj is String!!) { // 对于 String? obj 也一样生效,自动升级为非空版本
 print(obj.length)
}

if (obj !is String) { // 与 !(obj is String) 相同
 print("Not a String")
} else {
 print(obj.length)
}

fun demo(x: Any) {
 if (x is String) {
  print(x.length) // x 自动转换为字符串
 }
}

when (x) {
 is Int -> print(x + 1)
 is String -> print(x.length + 1)
 is IntArray -> print(x.sum())
}

// 可空类型的集合
val nullableList: List<Int?> = listOf(1, 2, null, 4)
val intList: List<Int> = nullableList.filterNotNull()

// 可空类型的简化诊断代码块
Int? zz = 8;
zz?.let {
 sum += it // 仅当 zz 非空时, 块内才被执行,it 表示 zz 的非空版
}

Kotlin 的这套语法机制真的是让人如同吃了人参果,无一个毛孔不舒服。但是它的实现机制是低代价而非无代价的,从这一点上来说,C++ 将不可能采纳等效的新语法,只能使用 std::optional<T> 这样的老奶奶裹脚布方案了。但它至少比没有的好。

小结

通过和 Kotlin 的比较,我们不无悲哀地看到,比较于 C++11 甚至于 C++98,optional 固然是个提升,然而受制于 C++ 标准委员会以及历史包袱的原因,简练有效的表达方式在现在不可能,在未来的 C++2x, 3x 中也应该是行不通的。

参考链接

std::optional at cppreference

到此这篇关于C++17中的std::optional的具体使用的文章就介绍到这了,更多相关C++17 std::optional内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用Visual Studio 2017作为Linux C++开发工具

    Visual Studio 2017 微软的宇宙第一IDE Visual Studio 2017正式版出来了,地址是:https://www.visualstudio.com/vs/whatsnew/ VS2017亮点很多,包括模块化安装.启动速度加快(第一次启动加快50%以上).github插件.启动页完善.增强代码提示功能,等等,更多参考:https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes. Visual

  • 用Visual Studio2017写C++静态库图文详解

    造轮子是一件有趣的事情,VS是一个强大的工具,能胜任超大规模的工程,但是讲真,对不那么大的项目配置起来不是那么友好(网上的其他教程也一点都不友好Orz).这里就展示一下构建一个简单的静态库的正确姿势.(顺便教一点道理 创建解决方案--许多人搞不清工程/项目Project和解决方案Solution的区别,在VS中,Project是基本的执行单元,一个Solution可以包含多个Project--我们的静态库就将会包含几个(.lib)Project和一个(.exe)Project用作测试.解决方案选

  • C++17结构化绑定的实现

    动机 std::map<K, V>的insert方法返回std::pair<iterator, bool>,两个元素分别是指向所插入键值对的迭代器与指示是否新插入元素的布尔值,而std::map<K, V>::iterator解引用又得到键值对std::pair<const K, V>.在一个涉及std::map的算法中,有可能出现大量的first和second,让人不知所措. #include <iostream> #include <m

  • C++ 17标准正式发布! 更简单地编写和维护代码

    C++17 是继 C++14 之后,C++ 编程语言 ISO/IEC 标准的下一次修订的非正式名称.而就在昨日,ISO C++ 委员会正式发布了 C++ 17 标准,官方名称为 ISO/IEC 14882:2017. C++ 17 标准化图表 C ++ 17 主要特性 基于 C++ 11,C++ 17 旨在使 C++ 成为一个不那么臃肿复杂的编程语言,以简化该语言的日常使用,使开发者可以更简单地编写和维护代码. C++ 17 是对 C++ 语言的重大更新,引入了许多新的语言特性: UTF-8 字

  • C++17中的折叠表达式实现

    前言 C++11 提供了可变模板参数包, 使函数可以接受任意数量的参数. 但在 C++11中展开参数包稍显麻烦, 而 C++17 的折叠表达式使得展开参数包变得容易, 其基本语法是使用 (-) 的语法形式进行展开. 支持的操作符 C++17中,折叠表达式支持 32 个操作符: +, -, *, /, %, ^, &, |, =, <, >, <<, >>, +=, -=, *=, /=, %=, ^=, &=, |=, <<=, >&g

  • C++ 17转发一个函数调用的完美实现

    前言 本文主要给大家介绍了关于C++17转发一个函数调用的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 方法如下 首先你灵光一闪: #define WARP_CALL(fun, ...) fun(__VA_ARGS__) 不我们并不喜欢宏,扩展性太差了 template<class R, class T1, class T2, class T3> R warp_call(R(*fun)(T1, T2, T3), T1 a, T2 b, T3 c) { return

  • C++17新特性个人总结

    C++17 编译器版本:GCC 7.1.Clang 5.0 __cplusplus:201703L 编译选项:-std=c++17 1 关键字 1.1 constexpr 扩展constexpr使用范围,可用于if语句中,也可用于lambda表达式中. 例子1: #include<iostream> template<bool ok> constexpr void foo() { //在编译期进行判断,if和else语句不生成代码 if constexpr (ok == true)

  • C++17中的std::optional的具体使用

    直入主题 本篇之中,仅仅述及 std::optional ,其它和 variant 相关的话题以后再说吧. std::optional 也划入 variant 类别中,其实它还是谈不上可称为变体类型的,但新版本中的三大件(optional,any and variant)也可以归一类无妨. C++17 之前 在 C 时代以及早期 C++ 时代,语法层面支持的 nullable 类型可以采用指针方式: T* ,如果指针为 NULL (C++11 之后则使用 nullptr ) 就表示无值状态(em

  • C++17使用std::optional表示可能存在的值

    目录 前言 返回一个bool值 使用 std::optional 改写 总结 前言 平时写代码会遇到一种传递参数特殊值标记特殊流程,或者函数返回值存在魔法数的情况,很需要一种标记参数或返回值状态的结构,那么在 C++17 标准下提供了 std::optional 这个模板类,可以表示一个值不存在的状态,一起来看看用法吧. 返回一个bool值 以下例子纯属虚构,只为说明问题,无实际意义 bool getBoolVal(int a, int b) {     int* n = new int;  

  • java8中forkjoin和optional框架使用

    并行流与串行流 并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流. java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作.Stream API 可以声明性地通过 parallel()与 sequential()在并行流与顺序流之间进行切换. 了解 Fork/Join 框架 Fork/Join 框架:就是在必要的情况下,将一个大任务,进形拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运行的结果进行join汇总. Fork/Join 框架

  • Java8中新特性Optional、接口中默认方法和静态方法详解

    前言 毫无疑问,Java 8是Java自Java 5(发布于2004年)之后的最重要的版本.这个版本包含语言.编译器.库.工具和JVM等方面的十多个新特性. Java 8是Java的一个重大版本,有人认为,虽然这些新特性领Java开发人员十分期待,但同时也需要花不少精力去学习.下面本文就给大家详细介绍了Java8中新特性Optional.接口中默认方法和静态方法的相关内容,话不多说了,来一起看看详细的介绍吧. Optional Optional 类(java.util.Optional) 是一个

  • c++11中关于std::thread的join的详解

    std::thread是c++11新引入的线程标准库,通过其可以方便的编写与平台无关的多线程程序,虽然对比针对平台来定制化多线程库会使性能达到最大,但是会丧失了可移植性,这样对比其他的高级语言,可谓是一个不足.终于在c++11承认多线程的标准,可谓可喜可贺!!! 在使用std::thread的时候,对创建的线程有两种操作:等待/分离,也就是join/detach操作.join()操作是在std::thread t(func)后"某个"合适的地方调用,其作用是回收对应创建的线程的资源,避

  • JDK8中新增的Optional工具类基本使用

    Optional类的使用 JDK8以前,编写代码,通常会出现 NullPointerException (空指针异常),通常情况下我们都是通过 if ... else... 来对对象进行为空判断,然后再进行逻辑处理,代码写起来也比较冗余. JDK8新增了Optional类,使用该类可以避免我们对空指针的检查,使代码看起来比较优雅.   最近刚好有空给大家整理下JDK8的特性,这个在实际开发中的作用也是越来越重了,本文重点讲解下Optional 这个Optional类注意是解决空指针的问题 1.

  • C++11 中的std::function和std::bind详解

    目录 1. 可调用对象 2. std::function 3. std::bind 3.1 std::bind绑定普通函数 3.2 std::bind绑定一个成员函数 3.3 绑定一个引用参数 4. 指向成员函数的指针 总结 1. 可调用对象 可调用对象有一下几种定义: 是一个函数指针,参考 C++ 函数指针和函数类型: 是一个具有operator()成员函数的类的对象: 可被转换成函数指针的类对象: 一个类成员函数指针: C++中可调用对象的虽然都有一个比较统一的操作形式,但是定义方法五花八门

  • 一文搞懂c++中的std::move函数

    目录 前言 左值和右值 左值引用 右值引用 std::move函数 remove_reference源码剖析 std::forward源码剖析 std::move()源码剖析 小结 std::move使用场景 实例:vector::push_back使用std::move提高性能 万能引用 引用折叠 完美转发 前言 在探讨c++11中的Move函数前,先介绍两个概念(左值和右值) 左值和右值 首先区分左值和右值 左值是表达式结束后依然存在的持久对象(代表一个在内存中占有确定位置的对象) 右值是表

  • 详解C++17中nodiscard标记符的使用

    目录 前言 弃值表达式 nodiscard标记符 函数非弃值声明 类/枚举类/结构 非弃值声明 返回类引用与类指针 前言 在C++ 17中引入了一个标记符nodiscard,用于声明一个 “非弃值(no-discard)表达式”.那么在开始之前,我们需要了解一下什么是弃值表达式. 弃值表达式 弃值表达式,就是放弃获取返回值的表达式.首先弃值表达式的返回值是非void类型的.一般,我们使用的弃值表达式,其返回值只是起次要的作用,而其本身的作用占主要.比如++i;就是一个弃值表达式,它的主要作用就是

随机推荐