Keras: model实现固定部分layer,训练部分layer操作

需求:Resnet50做调优训练,将最后分类数目由1000改为500。

问题:网上下载了resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5,更改了Resnet50后,由于所有层均参加训练,导致训练速度慢。实际上只需要训练最后3层,前面的层都不需要训练。

解决办法:

①将模型拆分为两个模型,一个为前面的notop部分,一个为最后三层,然后利用model的trainable属性设置只有后一个model训练,最后将两个模型合并起来。

②不用拆分,遍历模型的所有层,将前面层的trainable设置为False即可。代码如下:

for layer in model.layers[:-3]:
 print(layer.trainable)
 layer.trainable = False

注意事项:

①尽量不要这样:

layers.Conv2D(filters1, (1, 1), trainable=False)(input_tensor)

因为容易出错。。。

②加载notop参数时注意by_name=True.

补充知识:Keras关于训练冻结部分层

设置冻结层有两种方式。

(不推荐)是在搭建网络时,直接将某层的trainable设置为false,例如:

layers.Conv2D(filters1, (1, 1), trainable=False)(input_tensor)

在网络搭建完成时,遍历model.layer,然后将layer.trainable设置为False:

# 冻结网络倒数的3层
for layer in model.layers[:-3]:
 print(layer.trainable)
 layer.trainable = False

也可以根据layer.name来确定哪些层需要冻结,例如冻结最后一层和RNN层:

for layer in model.layers:
 layerName=str(layer.name)
 if layerName.startswith("RNN_") or layerName.startswith("Final_"):
 layer.trainable=False

可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。

这是一个例子

x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)

frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer='rmsprop', loss='mse')

layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer='rmsprop', loss='mse')

frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重

在网络搭建时,可以考虑最后一个分类层命名和分类数量关联,这样当费雷数量方式变化时,model.load_weight(“weight.h5”,by_name=True)不会加载最后一层

以上这篇Keras: model实现固定部分layer,训练部分layer操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras slice layer 层实现方式

    注意的地方: keras中每层的输入输出的tensor是张量, 比如Tensor shape是(N, H, W, C), 对于tf后台, channels_last Define a slice layer using Lamda layer def slice(x, h1, h2, w1, w2): """ Define a tensor slice function """ return x[:, h1:h2, w1:w2, :] 定义完sl

  • pytorch载入预训练模型后,实现训练指定层

    1.有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练: pretrained_params = torch.load('Pretrained_Model') model = The_New_Model(xxx) model.load_state_dict(pretrained_params.state_dict(), strict=False) strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃. 2.

  • keras实现调用自己训练的模型,并去掉全连接层

    其实很简单 from keras.models import load_model base_model = load_model('model_resenet.h5')#加载指定的模型 print(base_model.summary())#输出网络的结构图 这是我的网络模型的输出,其实就是它的结构图 _________________________________________________________________________________________________

  • Keras 实现加载预训练模型并冻结网络的层

    在解决一个任务时,我会选择加载预训练模型并逐步fine-tune.比如,分类任务中,优异的深度学习网络有很多. ResNet, VGG, Xception等等... 并且这些模型参数已经在imagenet数据集中训练的很好了,可以直接拿过来用. 根据自己的任务,训练一下最后的分类层即可得到比较好的结果.此时,就需要"冻结"预训练模型的所有层,即这些层的权重永不会更新. 以Xception为例: 加载预训练模型: from tensorflow.python.keras.applicat

  • Keras: model实现固定部分layer,训练部分layer操作

    需求:Resnet50做调优训练,将最后分类数目由1000改为500. 问题:网上下载了resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5,更改了Resnet50后,由于所有层均参加训练,导致训练速度慢.实际上只需要训练最后3层,前面的层都不需要训练. 解决办法: ①将模型拆分为两个模型,一个为前面的notop部分,一个为最后三层,然后利用model的trainable属性设置只有后一个model训练,最后将两个模型合并起来. ②不用拆分,遍

  • Keras使用ImageNet上预训练的模型方式

    我就废话不多说了,大家还是直接看代码吧! import keras import numpy as np from keras.applications import vgg16, inception_v3, resnet50, mobilenet #Load the VGG model vgg_model = vgg16.VGG16(weights='imagenet') #Load the Inception_V3 model inception_model = inception_v3.I

  • keras实现theano和tensorflow训练的模型相互转换

    我就废话不多说了,大家还是直接看代码吧~ </pre><pre code_snippet_id="1947416" snippet_file_name="blog_20161025_1_3331239" name="code" class="python"> # coding:utf-8 """ If you want to load pre-trained weights

  • pytorch 固定部分参数训练的方法

    需要自己过滤 optimizer.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3) 另外,如果是Variable,则可以初始化时指定 j = Variable(torch.randn(5,5), requires_grad=True) 但是如果是 m = nn.Linear(10,10) 是没有requires_grad传入的 m.requires_grad也没有 需要 for i in m.parameter

  • keras自定义回调函数查看训练的loss和accuracy方式

    前言: keras是一个十分便捷的开发框架,为了更好的追踪网络训练过程中的损失函数loss和准确率accuracy,我们有几种处理方式,第一种是直接通过 history=model.fit(),来返回一个history对象,通过这个对象可以访问到训练过程训练集的loss和accuracy以及验证集的loss和accuracy. 第二种方式就是通过自定义一个回调函数Call backs,来实现这一功能,本文主要讲解第二种方式. 一.如何构建回调函数Callbacks 本文所针对的例子是卷积神经网络

  • 解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

    错误描述: 1.保存模型:model.save_weights('./model.h5') 2.脚本重启 3.加载模型:model.load_weights('./model.h5') 4.模型报错:ValueError: You are trying to load a weight file containing 12 layers into a model with 0 layers. 问题分析: 模型创建后还没有编译,一般是在模型加载前调用model.build(input_shape)

  • 在keras中实现查看其训练loss值

    想要查看每次训练模型后的 loss 值变化需要如下操作 loss_value= [ ] self.history = model.fit(state,target_f,epochs=1, batch_size =32) b = abs(float(self.history.history['loss'][0])) loss_value.append(b) print(loss_value) loss_value = np.array( loss_value) x = np.array(range

  • 在layer弹层layer.prompt中,修改placeholder的实现方法

    如下所示: layer.prompt({title: '修改密码',placeholder:'请输入新密码'},function(val, index){ //成功后执行 }); 该修改的地方 layer.js 效果图 以上这篇在layer弹层layer.prompt中,修改placeholder的实现方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • tensorflow 固定部分参数训练,只训练部分参数的实例

    在使用tensorflow来训练一个模型的时候,有时候需要依靠验证集来判断模型是否已经过拟合,是否需要停止训练. 1.首先想到的是用tf.placeholder()载入不同的数据来进行计算,比如 def inference(input_): """ this is where you put your graph. the following is just an example. """ conv1 = tf.layers.conv2d(inp

  • keras model.fit 解决validation_spilt=num 的问题

    如下所示: hist = model.fit(x,y, epochs=epoch_num, batch_size=32,callbacks=early_stopping],validation_split=0.004,shuffle=True) 正确写法如上,注意当出现下面问题,或fit函数中其他参数关键字提示问题,优先排查先后顺序,一开始我把callbacks放在了validation_split后面,就会出错. Unrecognized keyword arguments: {'valida

随机推荐