Keras - GPU ID 和显存占用设定步骤

初步尝试 Keras (基于 Tensorflow 后端)深度框架时, 发现其对于 GPU 的使用比较神奇, 默认竟然是全部占满显存, 1080Ti 跑个小分类问题, 就一下子满了. 而且是服务器上的两张 1080Ti.

服务器上的多张 GPU 都占满, 有点浪费性能.

因此, 需要类似于 Caffe 等框架的可以设定 GPU ID 和显存自动按需分配.

实际中发现, Keras 还可以限制 GPU 显存占用量.

这里涉及到的内容有:

GPU ID 设定

GPU 显存占用按需分配

GPU 显存占用限制

GPU 显存优化

1. GPU ID 设定

#! -- coding: utf-8 --*--
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"

这里将 GPU ID 设为 1.

GPU ID 从 0 开始, GPUID=1 即表示第二块 GPU.

2. GPU 显存占用按需分配

#! -- coding: utf-8 --*--
import tensorflow as tf
import keras.backend.tensorflow_backend as ktf

# GPU 显存自动调用
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
session = tf.Session(config=config)
ktf.set_session(session)

3. GPU 显存占用限制

#! -- coding: utf-8 --*--
import tensorflow as tf
import keras.backend.tensorflow_backend as ktf

# 设定 GPU 显存占用比例为 0.3
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
session = tf.Session(config=config)
ktf.set_session(session )

这里虽然是设定了 GPU 显存占用的限制比例(0.3), 但如果训练所需实际显存占用超过该比例, 仍能正常训练, 类似于了按需分配.

设定 GPU 显存占用比例实际上是避免一定的显存资源浪费.

4. GPU ID 设定与显存按需分配

#! -- coding: utf-8 --*--
import os
import tensorflow as tf
import keras.backend.tensorflow_backend as ktf

# GPU 显存自动分配
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
#config.gpu_options.per_process_gpu_memory_fraction = 0.3
session = tf.Session(config=config)
ktf.set_session(session)

# 指定GPUID, 第一块GPU可用
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

5. 利用fit_generator最小化显存占用比例/数据Batch化

#! -- coding: utf-8 --*--

# 将内存中的数据分批(batch_size)送到显存中进行运算
def generate_arrays_from_memory(data_train, labels_train, batch_size):
  x = data_train
  y=labels_train
  ylen=len(y)
  loopcount=ylen // batch_size
  while True:
    i = np.random.randint(0,loopcount)
    yield x[i*batch_size:(i+1)*batch_size],y[i*batch_size:(i+1)*batch_size]

# load数据到内存
data_train=np.loadtxt("./data_train.txt")
labels_train=np.loadtxt('./labels_train.txt')
data_val=np.loadtxt('./data_val.txt')
labels_val=np.loadtxt('./labels_val.txt')

hist=model.fit_generator(generate_arrays_from_memory(data_train,
                           labels_train,
                           batch_size),
             steps_per_epoch=int(train_size/bs),
             epochs=ne,
             validation_data=(data_val,labels_val),
             callbacks=callbacks )

5.1 数据 Batch 化

#! -- coding: utf-8 --*--

def process_line(line):
  tmp = [int(val) for val in line.strip().split(',')]
  x = np.array(tmp[:-1])
  y = np.array(tmp[-1:])
  return x,y 

def generate_arrays_from_file(path,batch_size):
  while 1:
    f = open(path)
    cnt = 0
    X =[]
    Y =[]
    for line in f:
      # create Numpy arrays of input data
      # and labels, from each line in the file
      x, y = process_line(line)
      X.append(x)
      Y.append(y)
      cnt += 1
      if cnt==batch_size:
        cnt = 0
        yield (np.array(X), np.array(Y))
        X = []
        Y = []
  f.close() 

补充知识:Keras+Tensorflow指定运行显卡以及关闭session空出显存

Step1: 查看GPU

watch -n 3 nvidia-smi #在命令行窗口中查看当前GPU使用的情况, 3为刷新频率

Step2: 导入模块

导入必要的模块

import os
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from numba import cuda

Step3: 指定GPU

程序开头指定程序运行的GPU

os.environ['CUDA_VISIBLE_DEVICES'] = '1' # 使用单块GPU,指定其编号即可 (0 or 1or 2 or 3)
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2,3' # 使用多块GPU,指定其编号即可 (引号中指定即可)

Step4: 创建会话,指定显存使用百分比

创建tensorflow的Session

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.1 # 设定显存的利用率
set_session(tf.Session(config=config))

Step5: 释放显存

确保Volatile GPU-Util显示0%

程序运行完毕,关闭Session

K.clear_session() # 方法一:如果不关闭,则会一直占用显存

cuda.select_device(1) # 方法二:选择GPU1
cuda.close() #关闭选择的GPU

以上这篇Keras - GPU ID 和显存占用设定步骤就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras 多gpu并行运行案例

    一.多张gpu的卡上使用keras 有多张gpu卡时,推荐使用tensorflow 作为后端.使用多张gpu运行model,可以分为两种情况,一是数据并行,二是设备并行. 二.数据并行 数据并行将目标模型在多个设备上各复制一份,并使用每个设备上的复制品处理整个数据集的不同部分数据. 利用multi_gpu_model实现 keras.utils.multi_gpu_model(model, gpus=None, cpu_merge=True, cpu_relocation=False) 具体来说

  • keras实现多GPU或指定GPU的使用介绍

    1. keras新版本中加入多GPU并行使用的函数 下面程序段即可实现一个或多个GPU加速: 注意:使用多GPU加速时,Keras版本必须是Keras2.0.9以上版本 from keras.utils.training_utils import multi_gpu_model #导入keras多GPU函数 import VGG19 #导入已经写好的函数模型,例如VGG19 if G <= 1: print("[INFO] training with 1 GPU...") mod

  • Keras设定GPU使用内存大小方式(Tensorflow backend)

    通过设置Keras的Tensorflow后端的全局变量达到. import os import tensorflow as tf import keras.backend.tensorflow_backend as KTF def get_session(gpu_fraction=0.3): '''Assume that you have 6GB of GPU memory and want to allocate ~2GB''' num_threads = os.environ.get('OM

  • 解决Tensorflow占用GPU显存问题

    我使用Pytorch进行模型训练时发现真正模型本身对于显存的占用并不明显,但是对应的转换为tensorflow后(权重也进行了转换),发现Python-tensorflow在使用时默认吃掉所有显存,并且不手动终结程序的话显存并不释放(我有两个序贯的模型,前面一个跑完后并不释放占用显存)(https://github.com/tensorflow/tensorflow/issues/1727),这一点对于后续的工作有很大的影响. 后面发现python-tensorflow限制显存有两种方法: 1.

  • Keras - GPU ID 和显存占用设定步骤

    初步尝试 Keras (基于 Tensorflow 后端)深度框架时, 发现其对于 GPU 的使用比较神奇, 默认竟然是全部占满显存, 1080Ti 跑个小分类问题, 就一下子满了. 而且是服务器上的两张 1080Ti. 服务器上的多张 GPU 都占满, 有点浪费性能. 因此, 需要类似于 Caffe 等框架的可以设定 GPU ID 和显存自动按需分配. 实际中发现, Keras 还可以限制 GPU 显存占用量. 这里涉及到的内容有: GPU ID 设定 GPU 显存占用按需分配 GPU 显存占

  • Pytorch释放显存占用方式

    如果在python内调用pytorch有可能显存和GPU占用不会被自动释放,此时需要加入如下代码 torch.cuda.empty_cache() 我们来看一下官方文档的说明 Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible in nvidia-smi. Note e

  • python中显存回收问题解决方法

    目录 1.技术背景 2.问题复现 3.解决思路 4.总结概要 1.技术背景 笔者在执行一个Jax的任务中,又发现了一个奇怪的问题,就是明明只分配了很小的矩阵空间,但是在多次的任务执行之后,显存突然就爆了.而且此时已经按照Jax的官方说明配置了XLA_PYTHON_CLIENT_PREALLOCATE这个参数为false,也就是不进行显存的预分配(默认会分配90%的显存空间以供使用).然后在网上找到了一些类似的问题,比如参考链接中的1.2.3.4,都是在一些操作后发现未释放显存,这里提供一个实例问

  • Tensorflow与Keras自适应使用显存方式

    Tensorflow支持基于cuda内核与cudnn的GPU加速,Keras出现较晚,为Tensorflow的高层框架,由于Keras使用的方便性与很好的延展性,之后更是作为Tensorflow的官方指定第三方支持开源框架. 但两者在使用GPU时都有一个特点,就是默认为全占满模式.在训练的情况下,特别是分步训练时会导致显存溢出,导致程序崩溃. 可以使用自适应配置来调整显存的使用情况. 一.Tensorflow 1.指定显卡 代码中加入 import os os.environ["CUDA_VIS

  • 浅谈多卡服务器下隐藏部分 GPU 和 TensorFlow 的显存使用设置

    服务器有多张显卡,一般是组里共用,分配好显卡和任务就体现公德了.除了在代码中指定使用的 GPU 编号,还可以直接设置可见 GPU 编号,使程序/用户只对部分 GPU 可见. 操作很简单,使用环境变量 CUDA_VISIBLE_DEVICES 即可. 具体来说,如果使用单卡运行 Python 脚本,则可输入 CUDA_VISIBLE_DEVICES=1 python my_script.py 脚本将只使用 GPU1. 在 .py 脚本和 Notebook 中设置,则 import os os.en

  • Pytorch GPU显存充足却显示out of memory的解决方式

    今天在测试一个pytorch代码的时候显示显存不足,但是这个网络框架明明很简单,用CPU跑起来都没有问题,GPU却一直提示out of memory. 在网上找了很多方法都行不通,最后我想也许是pytorch版本的问题,原来我的pytorch版本是0.4.1,于是我就把这个版本卸载,然后安装了pytorch1.1.0,程序就可以神奇的运行了,不会再有OOM的提示了.虽然具体原因还不知道为何,这里还是先mark一下,具体过程如下: 卸载旧版本pytorch: conda uninstall pyt

  • pytorch程序异常后删除占用的显存操作

    1-删除模型变量 del model_define 2-清空CUDA cache torch.cuda.empty_cache() 3-步骤2(异步)需要一定时间,设置时延 time.sleep(5) 完整代码如下: del styler torch.cuda.empty_cache() time.sleep(5) 以上这篇pytorch程序异常后删除占用的显存操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • Tensorflow设置显存自适应,显存比例的操作

    Tensorfow框架下,在模型运行时,设置对显存的占用. 1. 按比例 config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.4 # 根据自己的需求确定 session = tf.Session(config=config, ...) 2. 自适应 config = tf.ConfigProto() config.gpu_options.allow_growth = True sessi

  • tensorflow 限制显存大小的实现

    Python在用GPU跑模型的时候最好开多进程,因为很明显这种任务就是计算密集型的. 用进程池好管理,但是tensorflow默认情况会最大占用显存,尽管该任务并不需要这么多,因此我们可以设置显存的按需获取,这样程序就不会死掉了. 1. 按比例预留: tf_config = tensorflow.ConfigProto() tf_config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 分配50% session = tensorflo

随机推荐