Python实现标记数组的连通域

目录
  • 连通域标记
  • structure参数
  • 操作连通域
  • 定位连通域

连通域标记

通过label函数,可以对数组中的连通区域进行标注,效果如下

from scipy.ndimage import label
import numpy as np
a = np.array([[0,0,1,1,0,0],
              [0,0,0,1,0,0],
              [1,1,0,0,1,0],
              [0,0,0,1,0,0]])
labels, N = label(a)
print(labels)
'''
[[0 0 1 1 0 0]
 [0 0 0 1 0 0]
 [2 2 0 0 3 0]
 [0 0 0 4 0 0]]
'''
print(N)    4

其中,a是一个二值矩阵,经过label标记后,其相连通的部分分别被标上了序号。可以更直观地用图像显示一下

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(121)
plt.imshow(a)
ax = fig.add_subplot(122)
plt.imshow(labels)
plt.show()

structure参数

在label函数中,还有一个用于规范何为“连通”的参数,即structure,其数据类型为二值数组,其维度与输入的input相同。

在上面的示例中,连通域1,3,4尽管没有上下左右的联系,但在对角线上是有交集的,通过调整structure参数,可以提供一种将这三个区域连在一起的连通域方案。

stru = np.ones([3,3])
bLab, bN = label(a, stru)
print(bLab)
‘'‘
[[0 0 1 1 0 0]
 [0 0 0 1 0 0]
 [2 2 0 0 1 0]
 [0 0 0 1 0 0]]
'‘'

可见,这次只选出了两组连通域。

操作连通域

scipy.ndimage提供了labeled_comprehension函数,其功能大致相当于[func(input[labels == i]) for i in index],即从已经做好连。通域标记的数组中,取出序号为index所在区域的值,参数如下

labeled_comprehension(input, labels, index, func, out_dtype, default, pass_positions=False)

其中input为输入数组;labels是已经做好的连通域标记;index为将要挑选进行操作的连通域序号;func为具体的操作函数;out_dtype为输出数据类型;default表示,当index不存在于连通域标记中时的输出值,下面做一个示例

from scipy.ndimage import labeled_comprehension
labeled_comprehension(a, labels, [1,2,3,4], sum, int, 0)
# array([3, 2, 1, 1])

连通域序号为1,2,3,4的区域,分别有3,2,1,1个元素,而且所有元素都是1,所以求和之后的值为[3, 2, 1, 1]。

定位连通域

scipy.ndimage中的find_objects函数可以返回连通域的切片范围。

from scipy.ndimage import find_objects
axis = find_objects(labels)
for x,y in axis:
    print(x, y)

'''
slice(0, 2, None) slice(2, 4, None)
slice(2, 3, None) slice(0, 2, None)
slice(2, 3, None) slice(4, 5, None)
slice(3, 4, None) slice(3, 4, None)
''''

如果根据这个对原数组进行切片,就可以得到其对应的标记区域

for x,y in axis:
    print(labels[x,y])
    print("--------")
'''
[[1 1]
 [0 1]]
--------
[[2 2]]
--------
[[3]]
--------
[[4]]
--------
'''

到此这篇关于Python实现标记数组的连通域的文章就介绍到这了,更多相关Python标记数组连通域内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python验证码识别教程之利用投影法、连通域法分割图片

    前言 今天这篇文章主要记录一下如何切分验证码,用到的主要库就是Pillow和Linux下的图像处理工具GIMP.首先假设一个固定位置和宽度.无粘连.无干扰的例子学习一下如何使用Pillow来切割图片. 使用GIMP打开图片后,按 加号 放大图片,然后点击View->Show Grid来显示网格线: 其中,每个正方形边长为10像素,所以数字1切割坐标为左20.上20.右40.下70.以此类推可以知道剩下3个数字的切割位置. 代码如下: from PIL import Image p = Image

  • OpenCV学习记录python实现连通域处理函数

    目录 1.两个函数介绍 1.1什么是连通域 1.2 cv2.connectedComponents() 1.3 cv2.connectedComponentsWithStats() 2.代码实践 3.总结 1.两个函数介绍 总得来说,connectedComponents()仅仅创建了一个标记图(图中不同连通域使用不同的标记,和原图宽高一致),connectedComponentsWithStats()可以完成上面任务,除此之外,还可以返回每个连通区域的重要信息–bounding box, ar

  • python中验证码连通域分割的方法详解

    实现思路 是用深度遍历,对图片进行二值化处理,先找到一个黑色像素,然后对这个像素的周围8个像素进行判断,如果没有访问过,就保存起来,然后最后这个数组的最小x和最大x就是x轴上的切割位置.这种分割的方法还是只能适用于没有粘连的验证码,比垂直分割的好处是,可以处理位置比较奇怪的验证码. 示例代码 def cfs(img): """传入二值化后的图片进行连通域分割""" pixdata = img.load() w,h = img.size visit

  • Python实现标记数组的连通域

    目录 连通域标记 structure参数 操作连通域 定位连通域 连通域标记 通过label函数,可以对数组中的连通区域进行标注,效果如下 from scipy.ndimage import label import numpy as np a = np.array([[0,0,1,1,0,0], [0,0,0,1,0,0], [1,1,0,0,1,0], [0,0,0,1,0,0]]) labels, N = label(a) print(labels) ''' [[0 0 1 1 0 0]

  • Python列表list数组array用法实例解析

    本文以实例形式详细讲述了Python列表list数组array用法.分享给大家供大家参考.具体如下: Python中的列表(list)类似于C#中的可变数组(ArrayList),用于顺序存储结构.   创建列表 复制代码 代码如下: sample_list = ['a',1,('a','b')] Python 列表操作 复制代码 代码如下: sample_list = ['a','b',0,1,3] 得到列表中的某一个值 复制代码 代码如下: value_start = sample_list

  • Python生成随机数组的方法小结

    本文实例讲述了Python生成随机数组的方法.分享给大家供大家参考,具体如下: 研究排序问题的时候常常需要生成随机数组来验证自己排序算法的正确性和性能,今天把Python生成随机数组的方法稍作总结,以备以后查看使用. 一.使用random模块生成随机数组 python的random模块中有一些生成随机数字的方法,例如random.randint, random.random, random.uniform, random.randrange,这些函数大同小异,均是在返回指定范围内的一个整数或浮点

  • python实现给数组按片赋值的方法

    本文实例讲述了python实现给数组按片赋值的方法.分享给大家供大家参考.具体如下: 这段代码可以直接给数组的第5-7个元素赋值 inventory = ["sword", "armor", "shield", "healing potion"] inventory[4:6] = ["orb of future telling"] print inventory 运行结果如下: ['sword', 'arm

  • python简单获取数组元素个数的方法

    本文实例讲述了python简单获取数组元素个数的方法.分享给大家供大家参考.具体如下: 复制代码 代码如下: mySeq = [1,2,3,4,5]  print len(mySeq) 运行结果如下: 5 希望本文所述对大家的Python程序设计有所帮助.

  • python创建关联数组(字典)的方法

    本文实例讲述了python创建关联数组(字典)的方法.分享给大家供大家参考.具体分析如下: 关联数组在python中叫字典,非常有用,下面是定义字典的两种方法 # Dictionary with quoted or variable keys d1 = {"name":"donuts","type":"chocolate","quantity":10} # Dictionary with fixed key

  • python实现判断数组是否包含指定元素的方法

    本文实例讲述了python实现判断数组是否包含指定元素的方法.分享给大家供大家参考.具体如下: python判断数组是否包含指定的元素的方法,直接使用in即可,python真是简单易懂 print 3 in [1, 2, 3] # membership (1 means true inventory = ["sword", "armor", "shield", "healing potion"] if "healin

  • Python简单计算数组元素平均值的方法示例

    本文实例讲述了Python简单计算数组元素平均值的方法.分享给大家供大家参考,具体如下: Python 环境:Python 2.7.12 x64 IDE :     Wing IDE Professional  5.1.12-1 题目:  求数组元素的平均值 实现代码: # coding:utf-8 #求数组元素的平均值 a=[1,4,8,10,12] b=len(a) sum=0 print "我们测试结果:" print "数组长度为:",b for i in

  • Python numpy实现数组合并实例(vstack,hstack)

    若干个数组可以沿不同的轴合合并到一起,vstack,hstack的简单用法, >>> a = np.floor(10*np.random.random((2,2))) >>> a array([[ 8., 8.], [ 0., 0.]]) >>> b = np.floor(10*np.random.random((2,2))) >>> b array([[ 1., 8.], [ 0., 4.]]) >>> np.vs

  • Python实现翻转数组功能示例

    本文实例讲述了Python实现翻转数组功能.分享给大家供大家参考,具体如下: 题目描述 给定一个长度为n的整数数组a,元素均不相同,问数组是否存在这样一个片段,只将该片段翻转就可以使整个数组升序排列.其中数组片段[l,r]表示序列a[l], a[l+1], ..., a[r].原始数组为 a[1], a[2], ..., a[l-2], a[l-1], a[l], a[l+1], ..., a[r-1], a[r], a[r+1], a[r+2], ..., a[n-1], a[n], 将片段[

随机推荐