图解Java中归并排序算法的原理与实现

目录
  • 一、基本思想
  • 二、算法分析
    • 1、算法描述
    • 2、过程分析
    • 3、动图演示
  • 三、算法实现

一、基本思想

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

二、算法分析

1、算法描述

把长度为n的输入序列分成两个长度为n/2的子序列;对这两个子序列分别采用归并排序;将两个排序好的子序列合并成一个最终的排序序列。

2、过程分析

(1)、现在我们将拆分项 [1] (指数从 0 到 0,两边都包括) 和 [28] 指数从 1 到 1 ,两边都包括) 归并在一起。

(2)、因为 1 (左拆分) <= 28 (右拆分), 我们将 {rightPart} 拷进新的数组。

(3)、因为左拆分是空的,我们将 28 (右拆分)拷进新的数组。

(4)、我们将新数组中的元素拷贝回原来的数组中。

(5)、因为 3 (左拆分) <= 21 (右拆分), 我们将 {rightPart} 拷进新的数组。

(6)、因为左拆分是空的,我们将 21 (右拆分)拷进新的数组。

(7)、现在我们将拆分项 [1,28] (指数从 0 到 1,两边都包括) 和 [3,21] 指数从 2 到 3 ,两边都包括) 归并在一起。

(8)、因为 1 (左拆分) <= 3 (右拆分), 我们将 {rightPart} 拷进新的数组。

(9)、因为 28 (左拆分) > 3 (右拆分), 我们将 {rightPart} 拷进新的数组。

(10)、因为 28 (左拆分) > 21 (右拆分), 我们将 {rightPart} 拷进新的数组。

(11)、因为右拆分是空的,我们将28 (左拆分) 拷贝进新的数组。

(12)、我们将新数组中的元素拷贝回原来的数组中。

(13)、现在我们将拆分项 [11] (指数从 4 到 4,两边都包括) 和 [7] 指数从 5 到 5 ,两边都包括) 归并在一起。

(14)、因为 11 (左拆分) > 7 (右拆分), 我们将 {rightPart} 拷进新的数组。

(15)、因为右拆分是空的,我们将11 (左拆分) 拷贝进新的数组。

(16)、我们将新数组中的元素拷贝回原来的数组中。

(17)、以此类推

(18)、因为 1 (左拆分) <= 6 (右拆分), 我们将 {rightPart} 拷进新的数组。

(19)、因为 3 (左拆分) <= 6 (右拆分), 我们将 {rightPart} 拷进新的数组。

(20)、因为 21 (左拆分) > 6 (右拆分), 我们将 {rightPart} 拷进新的数组。

(21)、因为 21 (左拆分) > 7 (右拆分), 我们将 {rightPart} 拷进新的数组。

(22)、以此类推,我们将新数组中的元素拷贝回原来的数组中。

3、动图演示

三、算法实现

package com.algorithm.tenSortingAlgorithm;

import java.util.Arrays;

public class MergeSort {
    private static void mergeSort(int[] arr, int low, int high) {
        if (low < high) { //当子序列中只有一个元素时结束递归
            int mid = (low + high) / 2; //划分子序列
            mergeSort(arr, low, mid); //对左侧子序列进行递归排序
            mergeSort(arr, mid + 1, high); //对右侧子序列进行递归排序
            merge(arr, low, mid, high); //合并
        }
    }

    private static void merge(int[] arr, int low, int mid, int high) {
        int[] temp = new int[arr.length]; //辅助数组
        int k = 0, i = low, j = mid + 1; //i左边序列和j右边序列起始索引,k是存放指针
        while (i <= mid && j <= high) {
            if (arr[i] <= arr[j]) {
                temp[k++] = arr[i++];
            } else {
                temp[k++] = arr[j++];
            }
        }
        //如果第一个序列未检测完,直接将后面所有元素加到合并的序列中
        while (i <= mid) {
            temp[k++] = arr[i++];
        }
        //同上
        while (j <= high) {
            temp[k++] = arr[j++];
        }
        //复制回原数组
        for (int t = 0; t < k; t++) {
            arr[low + t] = temp[t];
        }
    }

    public static void main(String[] args) {
        int[] arr = {1,28,3,21,11,7,6,18};
        mergeSort(arr, 0, arr.length - 1);
        System.out.println(Arrays.toString(arr));
    }
}

到此这篇关于图解Java中归并排序算法的原理与实现的文章就介绍到这了,更多相关Java归并排序内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java实现归并排序的示例代码

    目录 1.算法理解 2.实现代码 3.实现效果 1.算法理解 参考:图解Java中归并排序算法的原理与实现 2.实现代码 import java.lang.reflect.Array; import java.util.*; public class MergeSort{ // 我们的算法类不允许产生任何实例 private MergeSort(){} // 将arr[l...mid]和arr[mid+1...r]两部分进行归并 private static void merge(Compara

  • 图解Java排序算法之归并排序

    目录 基本思想 合并相邻有序子序列 代码实现 总结 基本思想 归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之). 分而治之 可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现).分阶段可以理解为就是递归拆分子序列的过程,递归深

  • java 排序算法之归并排序

    目录 简单介绍 基本思想 思路分析 代码实现 对代码的一些改进 大数据量耗时测试 复杂度 简单介绍 归并排序(merge sort)是利用 归并 的思想实现的排序方法,该算法采用经典的 分治(divide-and-conquer)策略 : 分(divide):将问题分成一些小的问题,然后递归求解 治(conquer):将分的阶段得到的各答案「修补」在一起 即:分而治之 该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使

  • JAVA十大排序算法之归并排序详解

    目录 归并排序 怎么分 怎么治 代码实现 时间复杂度 算法稳定性 总结 归并排序 归并,指合并,合在一起.归并排序(Merge Sort)是建立在归并操作上的一种排序算法.其主要思想是分而治之.什么是分而治之?分而治之就是将一个复杂的计算,按照设定的阈值进行分解成多个计算,然后将各个计算结果进行汇总.即"分"就是把一个大的通过递归拆成若干个小的,"治"就是将分后的结果在合在一起. 若将两个有序集合并成一个有序表,称为2-路归并,与之对应的还有多路归并. 怎么分 对于

  • Java 十大排序算法之归并排序刨析

    目录 归并排序原理 归并排序API设计 归并排序代码实现 归并排序的时间复杂度分析 归并排序原理 1.尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止. ⒉将相邻的两个子组进行合并成一个有序的大组. 3.不断的重复步骤2,直到最终只有一个组为止. 归并排序API设计 类名 Merge 构造方法 Merge():创建Merge对象 成员方法 1.public static void sort(Comparable[] a):对数组内的元素进行

  • 图解Java中归并排序算法的原理与实现

    目录 一.基本思想 二.算法分析 1.算法描述 2.过程分析 3.动图演示 三.算法实现 一.基本思想 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序列段间有序.若将两个有序表合并成一个有序表,称为2-路归并. 二.算法分析 1.算法描述 把长度为n的输入序列分成两个长度为n/2的子序列:对这两个子序列分别采用归并排序:将两个排序好的子序列合并

  • 图解Java中插入排序算法的原理与实现

    目录 一.基本思想 二.算法分析 1.算法描述 2.过程分析 三.算法实现 一.基本思想 插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法.它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入. 二.算法分析 1.算法描述 一般来说,插入排序都采用in-place在数组上实现.具体算法描述如下: 从第一个元素开始,该元素可以认为已经被排序: 取出下一个元素,在已经排序的元素序列中从后向前扫描: 如果该元素(已排序)大于新元素,将

  • Java中Prime算法的原理与实现详解

    目录 Prim算法介绍 1.点睛 2.算法介绍 3. 算法步骤 4.图解 Prime 算法实现 1.构建后的图 2.代码 3.测试 Prim算法介绍 1.点睛 在生成树的过程中,把已经在生成树中的节点看作一个集合,把剩下的节点看作另外一个集合,从连接两个集合的边中选择一条权值最小的边即可. 2.算法介绍 首先任选一个节点,例如节点1,把它放在集合 U 中,U={1},那么剩下的节点为 V-U={2,3,4,5,6,7},集合 V 是图的所有节点集合. 现在只需要看看连接两个集合(U 和 V-U)

  • java 中归并排序算法详解

    java 中归并排序算法详解 归并排序算法,顾名思义,是一种先分再合的算法,其算法思想是将要排序的数组分解为单个的元素,每个元素就是一个单个的个体,然后将相邻的两个元素进行从小到大或从大到小的顺序排序组成一个整体,每个整体包含一到两个元素,然后对相邻的整体继续"合"并,因为每个整体都是排过序的,因而可以采用一定的算法对其进行合并,合并之后每个整体包含三到四个元素,继续对相邻的整体进行合并,直到所有的整体都合并为一个整体,最终得到的整体就是将原数组进行排序之后的结果. 对于相邻的整体,其

  • 详解Java中KMP算法的图解与实现

    目录 图解 代码实现 图解 kmp算法跟之前讲的bm算法思想有一定的相似性.之前提到过,bm算法中有个好后缀的概念,而在kmp中有个好前缀的概念,什么是好前缀,我们先来看下面这个例子. 观察上面这个例子,已经匹配的abcde称为好前缀,a与之后的bcde都不匹配,所以没有必要再比一次,直接滑动到e之后即可. 那如果好前缀中有互相匹配的字符呢? 观察上面这个例子,这个时候如果我们直接滑到好前缀之后,则会过度滑动,错失匹配子串.那我们如何根据好前缀来进行合理滑动? 其实就是看当前的好前缀的前缀和后缀

  • 详解Java中AC自动机的原理与实现

    目录 简介 工作过程 数据结构 初始化 构建字典树 构建失败指针 匹配 执行结果 简介 AC自动机是一个多模式匹配算法,在模式匹配领域被广泛应用,举一个经典的例子,违禁词查找并替换为***.AC自动机其实是Trie树和KMP 算法的结合,首先将多模式串建立一个Tire树,然后结合KMP算法前缀与后缀匹配可以减少不必要比较的思想达到高效找到字符串中出现的匹配串. 如果不知道什么是Tire树,可以先查看:详解Java中字典树(Trie树)的图解与实现 如果不知道KMP算法,可以先查看:详解Java中

  • Java中GC的工作原理详细介绍

    Java中GC的工作原理 引子:面试时被问到垃圾回收机制,只是粗略的讲'程序员不能直接对内存操作,jvm负责对已经超过作用域的对象回收处理',面官表情呆滞,也就没再继续深入. 转文: 一个优秀的Java程序员必须了解GC的工作原理.如何优化GC的性能.如何与GC进行有限的交互,有一些应用程序对性能要求较高,例如嵌入式系统.实时系统等,只有全面提升内存的管理效率,才能提高整个应用程序的性能.本文将从GC的工作原理.GC的几个关键问题进行探讨,最后提出一些Java程序设计建议,如何从GC角度提高Ja

  • java 中基本算法之希尔排序的实例详解

    java 中基本算法之希尔排序的实例详解 希尔排序(Shell Sort)是插入排序的一种.也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本.希尔排序是非稳定排序算法.该方法因DL.Shell于1959年提出而得名. 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差

  • Java分治归并排序算法实例详解

    本文实例讲述了Java分治归并排序算法.分享给大家供大家参考,具体如下: 1.分治法 许多有用的算法在结构上是递归的:为了解决一个给定的问题,算法一次或多次递归地调用其自身以解决紧密相关的若干子问题.这些算法典型地遵循分治法的思想:将原问题分解为几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后再合并这些子问题的解来建立原问题的解. 分治模式在每层递归时都有三个步骤: (1)分解原问题为若干子问题,这些子问题是原问题的规模较小的实例. (2)解决这些子问题,递归地求解各子问题.然而,

  • 详解Java 中泛型的实现原理

    泛型是 Java 开发中常用的技术,了解泛型的几种形式和实现泛型的基本原理,有助于写出更优质的代码.本文总结了 Java 泛型的三种形式以及泛型实现原理. 泛型 泛型的本质是对类型进行参数化,在代码逻辑不关注具体的数据类型时使用.例如:实现一个通用的排序算法,此时关注的是算法本身,而非排序的对象的类型. 泛型方法 如下定义了一个泛型方法, 声明了一个类型变量,它可以应用于参数,返回值,和方法内的代码逻辑. class GenericMethod{ public <T> T[] sort(T[]

随机推荐