二叉查找树的插入,删除,查找

二叉查找树是满足以下条件的二叉树:
1、左子树上的所有节点值均小于根节点值,
2、右子树上的所有节点值均不小于根节点值,
3、左右子树也满足上述两个条件。

二叉查找树的插入过程如下:
1.若当前的二叉查找树为空,则插入的元素为根节点,
2.若插入的元素值小于根节点值,则将元素插入到左子树中,
3.若插入的元素值不小于根节点值,则将元素插入到右子树中。

二叉查找树的删除,分三种情况进行处理:
1.p为叶子节点,直接删除该节点,再修改其父节点的指针(注意分是根节点和不是根节点),如图a。

2.p为单支节点(即只有左子树或右子树)。让p的子树与p的父亲节点相连,删除p即可;(注意分是根节点和不是根节点);如图b。

3.p的左子树和右子树均不空。找到p的后继y,因为y一定没有左子树,所以可以删除y,并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替p的值;或者方法二是找到p的前驱x,x一定没有右子树,所以可以删除x,并让x的父亲节点成为y的左子树的父亲节点。如图c。

插入节点的代码:


代码如下:

struct node
{
    int val;
    pnode lchild;
    pnode rchild;
};

pnode BT = NULL;

//递归方法插入节点
pnode insert(pnode root, int x)
{
    pnode p = (pnode)malloc(LEN);
    p->val = x;
    p->lchild = NULL;
    p->rchild = NULL;
    if(root == NULL){
        root = p;   
    }   
    else if(x < root->val){
        root->lchild = insert(root->lchild, x);   
    }
    else{
        root->rchild = insert(root->rchild, x);   
    }
    return root;
}

//非递归方法插入节点
void insert_BST(pnode q, int x)
{
    pnode p = (pnode)malloc(LEN);
    p->val = x;
    p->lchild = NULL;
    p->rchild = NULL;
    if(q == NULL){
        BT = p;
        return ;   
    }       
    while(q->lchild != p && q->rchild != p){
        if(x < q->val){
            if(q->lchild){
                q = q->lchild;   
            }   
            else{
                q->lchild = p;
            }       
        }   
        else{
            if(q->rchild){
                q = q->rchild;   
            }   
            else{
                q->rchild = p;   
            }
        }
    }
    return;
}

查找节点的代码:


代码如下:

pnode search_BST(pnode p, int x)
{
    bool solve = false;
    while(p && !solve){
        if(x == p->val){
            solve = true;   
        }   
        else if(x < p->val){
            p = p->lchild;   
        }
        else{
            p = p->rchild;   
        }
    }
    if(p == NULL){
        cout << "没有找到" << x << endl;   
    }
    return p;
}

删除节点的代码


代码如下:

bool delete_BST(pnode p, int x) //返回一个标志,表示是否找到被删元素
{
    bool find = false;
    pnode q;
    p = BT;
    while(p && !find){  //寻找被删元素
        if(x == p->val){  //找到被删元素
            find = true;   
        }   
        else if(x < p->val){ //沿左子树找
            q = p;
            p = p->lchild;   
        }
        else{   //沿右子树找
            q = p;
            p = p->rchild;   
        }
    }
    if(p == NULL){   //没找到
        cout << "没有找到" << x << endl;   
    }

if(p->lchild == NULL && p->rchild == NULL){  //p为叶子节点
        if(p == BT){  //p为根节点
            BT = NULL;   
        }
        else if(q->lchild == p){  
            q->lchild = NULL;
        }       
        else{
            q->rchild = NULL;   
        }
        free(p);  //释放节点p
    }
    else if(p->lchild == NULL || p->rchild == NULL){ //p为单支子树
        if(p == BT){  //p为根节点
            if(p->lchild == NULL){
                BT = p->rchild;   
            }   
            else{
                BT = p->lchild;   
            }
        }   
        else{
            if(q->lchild == p && p->lchild){ //p是q的左子树且p有左子树
                q->lchild = p->lchild;    //将p的左子树链接到q的左指针上
            }   
            else if(q->lchild == p && p->rchild){
                q->lchild = p->rchild;   
            }
            else if(q->rchild == p && p->lchild){
                q->rchild = p->lchild;   
            }
            else{
                q->rchild = p->rchild;
            }
        }
        free(p);
    }
    else{ //p的左右子树均不为空
        pnode t = p;
        pnode s = p->lchild;  //从p的左子节点开始
        while(s->rchild){  //找到p的前驱,即p左子树中值最大的节点
            t = s;  
            s = s->rchild;   
        }
        p->val = s->val;   //把节点s的值赋给p
        if(t == p){
            p->lchild = s->lchild;   
        }   
        else{
            t->rchild = s->lchild;   
        }
        free(s);
    }
    return find;
}

(0)

相关推荐

  • c语言实现二叉查找树实例方法

    以下为算法详细流程及其实现.由于算法都用伪代码给出,就免了一些文字描述. 复制代码 代码如下: /*******************************************=================JJ日记=====================作者: JJDiaries(阿呆) 邮箱:JJDiaries@gmail.com日期: 2013-11-13============================================二叉查找树,支持的操作包括:SERA

  • 浅谈二叉查找树的集合总结分析

    我们都知道Dictionary<TKey, TValue>查找元素非常快,其实现原理是:将你TKey的值散列到数组的指定位置,将TValue的值存入对应的位置,由于取和存用的是同一个算法,所以就很容易定位到TValue的位置,花费的时间基本上就是实现散列算法的时间,跟其中元素的个数没有关系,故取值的时间复杂度为O(1).集合无非都是基于最基础语法的数组[],先欲分配,然后向其中添加元素,容量不够就创建一个2倍容量的数组,将之前的元素赋值过来,将之前的数组回收,但基于散列算法的集合这点上有点不同

  • 二叉查找树的插入,删除,查找

    二叉查找树是满足以下条件的二叉树:1.左子树上的所有节点值均小于根节点值,2.右子树上的所有节点值均不小于根节点值,3.左右子树也满足上述两个条件. 二叉查找树的插入过程如下:1.若当前的二叉查找树为空,则插入的元素为根节点,2.若插入的元素值小于根节点值,则将元素插入到左子树中,3.若插入的元素值不小于根节点值,则将元素插入到右子树中. 二叉查找树的删除,分三种情况进行处理:1.p为叶子节点,直接删除该节点,再修改其父节点的指针(注意分是根节点和不是根节点),如图a. 2.p为单支节点(即只有

  • Java创建二叉搜索树,实现搜索,插入,删除的操作实例

    Java实现的二叉搜索树,并实现对该树的搜索,插入,删除操作(合并删除,复制删除) 首先我们要有一个编码的思路,大致如下: 1.查找:根据二叉搜索树的数据特点,我们可以根据节点的值得比较来实现查找,查找值大于当前节点时向右走,反之向左走! 2.插入:我们应该知道,插入的全部都是叶子节点,所以我们就需要找到要进行插入的叶子节点的位置,插入的思路与查找的思路一致. 3.删除: 1)合并删除:一般来说会遇到以下几种情况,被删节点有左子树没右子树,此时要让当前节点的父节点指向当前节点的左子树:当被删节点

  • JS 在数组指定位置插入/删除数据的方法

    splice() 方法向/从数组中添加/删除项目,然后返回被删除的项目. 语法 arrayObject.splice(index,howmany,item1,.....,itemX)  参数说明 参数 描述 index 必需.整数,规定添加/删除项目的位置,使用负数可从数组结尾处规定位置. howmany 必需.要删除的项目数量.如果设置为 0,则不会删除项目. item1, -, itemX 可选.向数组添加的新项目. 实例 添加一个元素 var array = [1,2,3,4,6]; ar

  • java实现堆的操作方法(建堆,插入,删除)

    如下所示: import java.util.Arrays; //小顶堆的代码实现 public class Heap { // 向下调整,顶端的大值往下调,主要用于删除和建堆,i表示要调整的节点索引,n表示堆的最有一个元素索引 // 删除时候,i是0,建堆时候i从最后一个节点的父节点依次往前调整 public static void fixDown(int[] data, int i, int n) { int num = data[i]; int son = i * 2 + 1; while

  • PHP实现数组向任意位置插入,删除,替换数据操作示例

    本文实例讲述了PHP实现数组向任意位置插入,删除,替换数据操作.分享给大家供大家参考,具体如下: array_splice函数可以实现任意位置插入和删除,替换 array array_splice ( array &$input , int $offset [, int $length = count($input) [, mixed $replacement = array() ]] ) offset 如果 offset 为正,则从 input 数组中该值指定的偏移量开始移除.如果 offse

  • PostgreSQL数据库事务插入删除及更新操作示例

    目录 INSERT DELETE UPDATE 事务 INSERT 使用INSERT语句可以向表中插入数据. 创建一个表: CREATE TABLE ProductIns (product_id CHAR(4) NOT NULL, product_name VARCHAR(100) NOT NULL, product_type VARCHAR(32) NOT NULL, sale_price INTEGER DEFAULT 0, purchase_price INTEGER , regist_d

  • javascript数组对象常用api函数小结(连接,插入,删除,反转,排序等)

    本文实例讲述了javascript数组对象常用api函数.分享给大家供大家参考,具体如下: 1. concat() 连接两个或多个数组,并返回结果 var a = [1,2,3]; var b = a.concat(6,7); console.log(a); //[1,2,3] console.log(b); //[1,2,3,6,7] 2. join(str) 把数组的所有元素用str分隔,默认逗号分隔 var a = [1,2,3] var b = a.join('|'); console.

  • jsp操作MySQL实现查询/插入/删除功能示例

    直接贴代码吧: 首先,index_test.jsp页面的代码如下: 复制代码 代码如下: <%@ page language="java" pageEncoding="utf-8"%> <%@ page contentType="text/html;charset=utf-8"%>  <%     request.setCharacterEncoding("UTF-8");     respons

  • JSP中使用JavaScript动态插入删除输入框实现代码

    JavaScript代码: 复制代码 代码如下: <script language="javascript"> function addrows(){ var len = optionlist.rows.length; //得到table的行数 var obj = optionlist.insertRow(len);//在最后一行插入 /**插入第一列**/ obj.insertCell(0); obj.cells(0).innerHTML="选项" +

  • c语言实现的货物管理系统实例代码(增加删除 查找货物信息等功能)

    复制代码 代码如下: #include <stdio.h>#include <stdlib.h>#include <string.h>#include <conio.h>        /*屏幕操作函数库*/ /*主管权限数据格式化*/#define HEADER1_zg "-----------------------------货物管理系统(主管)--------------------------------\n"#define H

随机推荐