python基于multiprocessing的多进程创建方法

本文实例讲述了python基于multiprocessing的多进程创建方法。分享给大家供大家参考。具体如下:

import multiprocessing
import time
def clock(interval):
  while True:
    print ("the time is %s"% time.time())
    time.sleep(interval)
if __name__=="__main__":
  p = multiprocessing.Process(target=clock,args=(15,))
  p.start() #启动进程

定义进程的另一种方法,继承Process类,并实现run方法:

import multiprocessing
import time
class ClockProcessing(multiprocessing.Process):
  def __init__(self, intverval):
    multiprocessing.Process.__init__(self)
    self.intverval = intverval
  def run(self):
    while True:
      print ("the time is %s"% time.time())
      time.sleep(self.interval)
if __name__=="__main__":
  p = ClockProcessing(15)
  p.start() #启动进程

希望本文所述对大家的Python程序设计有所帮助。

(0)

相关推荐

  • Python多进程multiprocessing用法实例分析

    本文实例讲述了Python多进程multiprocessing用法.分享给大家供大家参考,具体如下: mutilprocess简介 像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多. 简单的创建进程: import multiprocessing def worker(num): """thread worker function""" print 'Wor

  • Python使用multiprocessing创建进程的方法

    本文实例讲述了Python使用multiprocessing创建进程的方法.分享给大家供大家参考.具体分析如下: 进程可以通过调用multiprocessing的Process进行创建,下面代码创建两个进程. [root@localhost ~]# cat twoproces.py #!/usr/bin/env python from multiprocessing import Process import os def output(): print "My pid is :%d\n&quo

  • python使用multiprocessing模块实现带回调函数的异步调用方法

    本文实例讲述了python使用multiprocessing模块实现带回调函数的异步调用方法.分享给大家供大家参考.具体分析如下: multipressing模块是python 2.6版本加入的,通过这个模块可以轻松实现异步调用 from multiprocessing import Pool def f(x): return x*x if __name__ == '__main__': pool = Pool(processes=1) # Start a worker processes. r

  • 简单学习Python多进程Multiprocessing

    1.1 什么是 Multiprocessing 多线程在同一时间只能处理一个任务. 可把任务平均分配给每个核,而每个核具有自己的运算空间. 1.2 添加进程 Process 与线程类似,如下所示,但是该程序直接运行无结果,因为IDLE不支持多进程,在命令行终端运行才有结果显示 import multiprocessing as mp def job(a,b): print('abc') if __name__=='__main__': p1=mp.Process(target=job,args=

  • Python multiprocessing.Manager介绍和实例(进程间共享数据)

    Python中进程间共享数据,处理基本的queue,pipe和value+array外,还提供了更高层次的封装.使用multiprocessing.Manager可以简单地使用这些高级接口. Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问.从而达到多进程间数据通信且安全. Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaph

  • Python multiprocessing模块中的Pipe管道使用实例

    multiprocessing.Pipe([duplex]) 返回2个连接对象(conn1, conn2),代表管道的两端,默认是双向通信.如果duplex=False,conn1只能用来接收消息,conn2只能用来发送消息.不同于os.open之处在于os.pipe()返回2个文件描述符(r, w),表示可读的和可写的 实例如下: 复制代码 代码如下: #!/usr/bin/python #coding=utf-8 import os from multiprocessing import P

  • Python标准库之多进程(multiprocessing包)介绍

    在初步了解Python多进程之后,我们可以继续探索multiprocessing包中更加高级的工具.这些工具可以让我们更加便利地实现多进程. 进程池 进程池 (Process Pool)可以创建多个进程.这些进程就像是随时待命的士兵,准备执行任务(程序).一个进程池中可以容纳多个待命的士兵. "三个进程的进程池" 比如下面的程序: 复制代码 代码如下: import multiprocessing as mul def f(x):     return x**2 pool = mul.

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • Python使用multiprocessing实现一个最简单的分布式作业调度系统

    mutilprocess像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多. 介绍 Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上.一个服务进程可以作为调度者,将任务分布到其他多个机器的多个进程中,依靠网络通信. 想到这,就在想是不是可以使用此模块来实现一个简单的作业调度系统. 实现 Job 首先创建一个Job类,为了测试简单,只包含一

  • python基于multiprocessing的多进程创建方法

    本文实例讲述了python基于multiprocessing的多进程创建方法.分享给大家供大家参考.具体如下: import multiprocessing import time def clock(interval): while True: print ("the time is %s"% time.time()) time.sleep(interval) if __name__=="__main__": p = multiprocessing.Process

  • Python基于PycURL实现POST的方法

    本文实例讲述了Python基于PycURL实现POST的方法.分享给大家供大家参考.具体如下: import pycurl import StringIO import urllib url = "http://www.google.com/" post_data_dic = {"name":"value"} crl = pycurl.Curl() crl.setopt(pycurl.VERBOSE,1) crl.setopt(pycurl.FO

  • Python基于PycURL自动处理cookie的方法

    本文实例讲述了Python基于PycURL自动处理cookie的方法.分享给大家供大家参考.具体如下: import pycurl import StringIO url = "http://www.google.com/" crl = pycurl.Curl() crl.setopt(pycurl.VERBOSE,1) crl.setopt(pycurl.FOLLOWLOCATION, 1) crl.setopt(pycurl.MAXREDIRS, 5) crl.fp = Strin

  • python+django+rest框架配置创建方法

    安装好所需要的插件和包: python.django.pip等版本如下: 采用Django REST框架3.0 1.在python文件夹下D:\python\Lib\site-packages\django\bin打开cmd命令工具,本人将python文件夹名字改为了wwj,请注意: mkdir tutorial cd tutorial virtualenv env source env/bin/activate pip install django pip install djangorest

  • Python中pandas模块DataFrame创建方法示例

    本文实例讲述了Python中pandas模块DataFrame创建方法.分享给大家供大家参考,具体如下: DataFrame创建 1. 通过列表创建DataFrame 2. 通过字典创建DataFrame 3. 通过Numpy数组创建DataFrame DataFrame这种列表式的数据结构和Excel工作表非常类似,其设计初衷是讲Series的使用场景由一维扩展到多维. DataFrame由按一定顺序的多列数据组成,各列的数据类型可以有所不同(数值.字符串.布尔值). Series对象的Ind

  • Python Decorator装饰器的创建方法及常用场景分析

    目录 前言 一.创建方式 二.常用场景 前言 1.装饰器本质是一个语法糖,是对被装饰方法或类进行的功能扩充,是一种面向切面的实现方法2.装饰器可以分成方法装饰器和类装饰器,他们的区别是一个是用函数实现的装饰器,一个是用类实现的装饰器,他们也都能在方法和类上进行装饰3.类装饰器看起来结构更加清晰,因此下面的代码实现的装饰器全是类装饰器 一.创建方式 1.创建“装饰方法”的类装饰器 from functools import wraps # 装饰器类 class MyDecorator(object

  • Python基于当前时间批量创建文件

    在平时的工作中,我们经常会遇到需要批量创建文件的情况,例如,汇总一个月中每天回复问题的文件等,这里,我们以如何使用当前日期时间创建文件为例: import os import datetime import time while True: #记录文件的保存地址 path = input('请输入文件保存地址:') #记录文件的创建数量 num = int(input('请输入创建文件的数量:')) #循环创建文件 for i in range(num): #生成现在的时间 t = dateti

  • Python基于ThreadingTCPServer创建多线程代理的方法示例

    本文实例讲述了Python基于ThreadingTCPServer创建多线程代理的方法.分享给大家供大家参考,具体如下: #coding=utf8 from BaseHTTPServer import BaseHTTPRequestHandler from SocketServer import ThreadingTCPServer import gzip from StringIO import StringIO import logging logging.basicConfig(level

  • Python并发之多进程的方法实例代码

    一,进程的理论基础 一个应用程序,归根结底是一堆代码,是静态的,而进程才是执行中的程序,在一个程序运行的时候会有多个进程并发执行. 进程和线程的区别: 进程是系统资源分配的基本单位. 一个进程内可以包含多个线程,属于一对多的关系,进程内的资源,被其内的线程共享 线程是进程运行的最小单位,如果说进程是完成一个功能,那么其线程就是完成这个功能的基本单位 进程间资源不共享,多进程切换资源开销,难度大,同一进程内的线程资源共享,多线程切换资源开销,难度小 进程与线程的共同点: 都是为了提高程序运行效率,

随机推荐