Python分治法定义与应用实例详解

本文实例讲述了Python分治法定义与应用。分享给大家供大家参考,具体如下:

分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

题目1. 给定一个顺序表,编写一个求出其最大值的分治算法。

# 基本子算法(子问题规模小于等于 2 时)
def get_max(max_list):
  return max(max_list) # 这里偷个懒!
# 分治法 版本一
def solve(init_list):
  n = len(init_list)
  if n <= 2: # 若问题规模小于等于 2,最终解决
    return get_max(init_list)
  # 分解(子问题规模为 2,最后一个可能为 1)
  temp_list=(init_list[i:i+2] for i in range(0, n, 2))
  # 分治,合并
  max_list = list(map(get_max, temp_list))
  # 递归(树)
  solve(max_list)
# 分治法 版本二
def solve2(init_list):
  n = len(init_list)
  if n <= 2: # 若问题规模小于等于 2,解决
    return get_max(init_list)
  # 分解(子问题规模为 n/2)
  left_list, right_list = init_list[:n//2], init_list[n//2:]
  # 递归(树),分治
  left_max, right_max = solve2(left_list), solve2(right_list)
  # 合并
  return get_max([left_max, right_max])
if __name__ == "__main__":
  # 测试数据
  test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
  # 求最大值
  print(solve(test_list)) # 67
  print(solve2(test_list)) # 67

题目2. 给定一个顺序表,判断某个元素是否在其中。

# 子问题算法(子问题规模为 1)
def is_in_list(init_list, el):
  return [False, True][init_list[0] == el]
# 分治法
def solve(init_list, el):
  n = len(init_list)
  if n == 1: # 若问题规模等于 1,直接解决
    return is_in_list(init_list, el)
  # 分解(子问题规模为 n/2)
  left_list, right_list = init_list[:n//2], init_list[n//2:]
  # 递归(树),分治,合并
  res = solve(left_list, el) or solve(right_list, el)
  return res
if __name__ == "__main__":
  # 测试数据
  test_list = [12,2,23,45,67,3,2,4,45,63,24,23]
  # 查找
  print(solve2(test_list, 45)) # True
  print(solve2(test_list, 5)) # False

题目3. 找出一组序列中的第 k 小的元素,要求线性时间

# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
  pi = seq[0]              # 挑选主元
  lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
  hi = [x for x in seq[1:] if x > pi]  # 所有大的元素
  return lo, pi, hi
# 查找第 k 小的元素
def select(seq, k):
  # 分解
  lo, pi, hi = partition(seq)
  m = len(lo)
  if m == k:
    return pi        # 解决!
  elif m < k:
    return select(hi, k-m-1) # 递归(树),分治
  else:
    return select(lo, k)   # 递归(树),分治
if __name__ == '__main__':
  seq = [3, 4, 1, 6, 3, 7, 9, 13, 93, 0, 100, 1, 2, 2, 3, 3, 2]
  print(select(seq, 3)) #2
  print(select(seq, 5)) #2

题目4. 快速排序

# 划分(基于主元 pivot),注意:非就地划分
def partition(seq):
  pi = seq[0]              # 挑选主元
  lo = [x for x in seq[1:] if x <= pi] # 所有小的元素
  hi = [x for x in seq[1:] if x > pi]  # 所有大的元素
  return lo, pi, hi
# 快速排序
def quicksort(seq):
  # 若问题规模小于等于1,解决
  if len(seq) <= 1: return seq
  # 分解
  lo, pi, hi = partition(seq)
  # 递归(树),分治,合并
  return quicksort(lo) + [pi] + quicksort(hi)
seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]
print(quicksort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

题目5. 合并排序(二分排序)

# 合并排序
def mergesort(seq):
  # 分解(基于中点)
  mid = len(seq) // 2
  left_seq, right_seq = seq[:mid], seq[mid:]
  # 递归(树),分治
  if len(left_seq) > 1: left_seq = mergesort(left_seq)
  if len(right_seq) > 1: right_seq = mergesort(right_seq)
  # 合并
  res = []
  while left_seq and right_seq:     # 只要两者皆非空
    if left_seq[-1] >= right_seq[-1]: # 两者尾部较大者,弹出
      res.append(left_seq.pop())
    else:
      res.append(right_seq.pop())
  res.reverse()             # 倒序
  return (left_seq or right_seq) + res  # 前面加上剩下的非空的seq
seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]
print(mergesort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

题目6. 汉诺塔

# 汉诺塔
def move(n, a, buffer, c):
  if n == 1:
    print(a,"->",c)
    #return
  else:
    # 递归(线性)
    move(n-1, a, c, buffer)
    move(1, a, buffer, c) # 或者:print(a,"->",c)
    move(n-1, buffer, a, c)
move(3, "a", "b", "c")

问题7. 爬楼梯

假设你正在爬楼梯,需要n步你才能到达顶部。但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部?

# 爬楼梯
def climb(n=7):
  if n <= 2:
    return n
  return climb(n-1) + climb(n-2) # 等价于斐波那契数列!
print(climb(5)) # 8
print(climb(7)) # 21

问题8. 给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。(最近点对问题)

from math import sqrt
# 蛮力法
def solve(points):
  n = len(points)
  min_d = float("inf") # 最小距离:无穷大
  min_ps = None    # 最近点对
  for i in range(n-1):
    for j in range(i+1, n):
      d = sqrt((points[i][0] - points[j][0])**2 + (points[i][1] - points[j][1])**2) # 两点距离
      if d < min_d:
        min_d = d            # 修改最小距离
        min_ps = [points[i], points[j]] # 保存最近点对
  return min_ps
# 最接近点对(报错!)
def nearest_dot(seq):
  # 注意:seq事先已对x坐标排序
  n = len(seq)
  if n <= 2: return seq # 若问题规模等于 2,直接解决
  # 分解(子问题规模n/2)
  left, right = seq[0:n//2], seq[n//2:]
  print(left, right)
  mid_x = (left[-1][0] + right[0][0])/2.0
  # 递归,分治
  lmin = (left, nearest_dot(left))[len(left) > 2]  # 左侧最近点对
  rmin = (right, nearest_dot(right))[len(right) > 2] # 右侧最近点对
  # 合并
  dis_l = (float("inf"), get_distance(lmin))[len(lmin) > 1]
  dis_r = (float("inf"), get_distance(rmin))[len(rmin) > 1]
  d = min(dis_l, dis_r)  # 最近点对距离
  # 处理中线附近的带状区域(近似蛮力)
  left = list(filter(lambda p:mid_x - p[0] <= d, left))  #中间线左侧的距离<=d的点
  right = list(filter(lambda p:p[0] - mid_x <= d, right)) #中间线右侧的距离<=d的点
  mid_min = []
  for p in left:
    for q in right:
      if abs(p[0]-q[0])<=d and abs(p[1]-q[1]) <= d:   #如果右侧部分点在p点的(d,2d)之间
        td = get_distance((p,q))
        if td <= d:
          mid_min = [p,q]  # 记录p,q点对
          d = td      # 修改最小距离
  if mid_min:
    return mid_min
  elif dis_l>dis_r:
    return rmin
  else:
    return lmin
# 两点距离
def get_distance(min):
  return sqrt((min[0][0]-min[1][0])**2 + (min[0][1]-min[1][1])**2)
def divide_conquer(seq):
  seq.sort(key=lambda x:x[0])
  res = nearest_dot(seq)
  return res
# 测试
seq=[(0,1),(3,2),(4,3),(5,1),(1,2),(2,1),(6,2),(7,2),(8,3),(4,5),(9,0),(6,4)]
print(solve(seq)) # [(6, 2), (7, 2)]
#print(divide_conquer(seq)) # [(6, 2), (7, 2)]

问题9. 从数组 seq 中找出和为 s 的数值组合,有多少种可能

'''
求一个算法:N个数,用其中M个任意组合相加等于一个已知数X。得出这M个数是哪些数。
比如:
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
全部可能的数字组合有:
5+9, 6+8
1+4+9, 1+5+8, 1+6+7, 2+3+9, 2+4+8, 2+5+7, 3+4+7, 3+5+6
1+2+5+6, 1+3+4+6, 1+2+4+7, 1+2+3+8, 2+3+4+5
共计15种
'''
# 版本一(纯计数)
def find(seq, s):
  n = len(seq)
  if n==1:
    return [0, 1][seq[0]==s]
  if seq[0]==s:
    return 1 + find(seq[1:], s)
  else:
    return find(seq[1:], s-seq[0]) + find(seq[1:], s)
# 测试
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
print(find(seq, s)) # 15
seq = [11,23,6,31,8,9,15,20,24,14]
s = 40 # 和
print(find(seq, s)) #8
# 版本二 (打印)
def find2(seq, s, tmp=''):
  if len(seq)==0:  # 终止条件
    return
  if seq[0] == s:        # 找到一种,则
    print(tmp + str(seq[0])) # 打印
  find2(seq[1:], s, tmp)               # 尾递归 ---不含 seq[0] 的情况
  find2(seq[1:], s-seq[0], str(seq[0]) + '+' + tmp)  # 尾递归 ---含 seq[0] 的情况
# 测试
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9]
s = 14 # 和
find2(seq, s)
print()
seq = [11,23,6,31,8,9,15,20,24,14]
s = 40 # 和
find2(seq, s)

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python基于DES算法加密解密实例

    本文实例讲述了Python基于DES算法加密解密实现方法.分享给大家供大家参考.具体实现方法如下: #coding=utf-8 from functools import partial import base64 class DES(object): """ DES加密算法 interface: input_key(s, base=10), encode(s), decode(s) """ __ip = [ 58,50,42,34,26,18,

  • 用Python实现通过哈希算法检测图片重复的教程

    Iconfinder 是一个图标搜索引擎,为设计师.开发者和其他创意工作者提供精美图标,目前托管超过 34 万枚图标,是全球最大的付费图标库.用户也可以在 Iconfinder 的交易板块上传出售原创作品.每个月都有成千上万的图标上传到Iconfinder,同时也伴随而来大量的盗版图.Iconfinder 工程师 Silviu Tantos 在本文中提出一个新颖巧妙的图像查重技术,以杜绝盗版. 我们将在未来几周之内推出一个检测上传图标是否重复的功能.例如,如果用户下载了一个图标然后又试图通过上传

  • python使用rsa加密算法模块模拟新浪微博登录

    PC登录新浪微博时,在客户端用js预先对用户名.密码都进行了加密,而且在POST之前会GET一组参数,这也将作为POST_DATA的一部分.这样,就不能用通常的那种简单方法来模拟POST登录(比如人人网). 通过爬虫获取新浪微博数据,模拟登录是必不可少的. 1.在提交POST请求之前,需要GET获取四个参数(servertime,nonce,pubkey和rsakv),不是之前提到的只是获取简单的servertime,nonce,这里主要是由于js对用户名.密码加密方式改变了. 1.1 由于加密

  • python k-近邻算法实例分享

    简单说明 这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了. 简称kNN. 已知:训练集,以及每个训练集的标签. 接下来:和训练集中的数据对比,计算最相似的k个距离.选择相似数据中最多的那个分类.作为新数据的分类. python实例 复制代码 代码如下: # -*- coding: cp936 -*- #win系统中应用cp936编码,linux中最好还是utf-8比较好.from numpy import *#引入科学计算包import operator #经典pyt

  • Python实现的Kmeans++算法实例

    1.从Kmeans说起 Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了.下面说一下如何在matlab中使用kmeans算法. 创建7个二维的数据点: 复制代码 代码如下: x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]]; 使用kmeans函数: 复制代码 代码如下: class = kmeans(x, 2); x是数据点,x的每一行代表一个数据:2指定要有2个中心点,也就是聚类结果要有2个簇. class将是一个具有7

  • 朴素贝叶斯算法的python实现方法

    本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词的分布,那么我们还要知道:垃圾邮件中某些词的出现是多少,就可以利用贝叶斯定理得到. 朴素贝叶斯分类器中的一个假设是:每个特征同等重要 函数 loadDataSet() 创建数据集,这里的数据集

  • Python算法之栈(stack)的实现

    本文以实例形式展示了Python算法中栈(stack)的实现,对于学习数据结构域算法有一定的参考借鉴价值.具体内容如下: 1.栈stack通常的操作: Stack() 建立一个空的栈对象 push() 把一个元素添加到栈的最顶层 pop() 删除栈最顶层的元素,并返回这个元素 peek()  返回最顶层的元素,并不删除它 isEmpty()  判断栈是否为空 size()  返回栈中元素的个数 2.简单案例以及操作结果: Stack Operation Stack Contents Return

  • python实现RSA加密(解密)算法

    RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准. 今天只有短的RSA钥匙才可能被强力方式解破.到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式.只要其密钥的长度足够长,用RSA加密的信息实际上是不能被解破的.但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战. RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥.

  • Python聚类算法之凝聚层次聚类实例分析

    本文实例讲述了Python聚类算法之凝聚层次聚类.分享给大家供大家参考,具体如下: 凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇.另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并.对于这里的"最接近",有下面三种定义.我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行: 单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离. 全链(MAX

  • python编写的最短路径算法

    一心想学习算法,很少去真正静下心来去研究,前几天趁着周末去了解了最短路径的资料,用python写了一个最短路径算法.算法是基于带权无向图去寻找两个点之间的最短路径,数据存储用邻接矩阵记录.首先画出一幅无向图如下,标出各个节点之间的权值. 其中对应索引: A --> 0 B--> 1 C--> 2 D-->3 E--> 4 F--> 5 G--> 6 邻接矩阵表示无向图: 算法思想是通过Dijkstra算法结合自身想法实现的.大致思路是:从起始点开始,搜索周围的路径

  • python使用分治法实现求解最大值的方法

    本文实例讲述了python使用分治法实现求解最大值的方法.分享给大家供大家参考.具体分析如下: 题目: 给定一个顺序表,编写一个求出其最大值和最小值的分治算法. 分析: 由于顺序表的结构没有给出,作为演示分治法这里从简顺序表取一整形数组数组大小由用户定义,数据随机生成.我们知道如果数组大小为 1 则可以直接给出结果,如果大小为 2则一次比较即可得出结果,于是我们找到求解该问题的子问题即: 数组大小 <= 2.到此我们就可以进行分治运算了,只要求解的问题数组长度比 2 大就继续分治,否则求解子问题

  • python实现simhash算法实例

    Simhash的算法简单的来说就是,从海量文本中快速搜索和已知simhash相差小于k位的simhash集合,这里每个文本都可以用一个simhash值来代表,一个simhash有64bit,相似的文本,64bit也相似,论文中k的经验值为3.该方法的缺点如优点一样明显,主要有两点,对于短文本,k值很敏感:另一个是由于算法是以空间换时间,系统内存吃不消. 复制代码 代码如下: #!/usr/bin/python# coding=utf-8class simhash: #构造函数    def __

随机推荐