c++实现二叉查找树示例

代码如下:

/**
 实现二叉查找树的基本功能
*/

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <string>

using namespace std;

const int M = 10000;

//定义数据节点
class dNode{
public:
 string name;
 int age;
 bool sex;
 dNode(){
  age = 0;
  name = "no name";
  sex = true;//nan
 }
 dNode(string name, int age, bool sex):name(name), age(age), sex(sex){}
 //打印节点
 void show(){
  cout << "name: " << this->name << endl;
  cout << "age: " << this->age << endl;
  cout << "sex: " << this->sex << endl;
  cout << "******************************" << endl;
 }
 //重载赋值符号
 bool operator = (const dNode &d){
  this->age = d.age;
  this->name = d.name;
  this->sex = d.sex;
 }
 //重载相等符号
 bool operator == (const dNode &d){
  return name == d.name && age == d.age && sex == sex;
 }
 //按照年龄重载大于符号
 bool operator > (const dNode &d){
  return age > d.age;
 }
 //按照年龄重载小于符号
 bool operator < (const dNode &d){
  return age < d.age;
 }

};
//定义二叉查找树的节点
//这里规定树中没有重复节点,这里需要对一个节点记录出现多少次
class bstNode{
public: 
 bstNode *left;
 bstNode *right;
 bstNode *parent; //执行父亲,便于向上访问,如果数据量大,并且向上找的使用率不大就不要来减少空间
 dNode data;  //该节点在树中出现的次数
 int count;
 bstNode(){
  left = right = parent = NULL;
  count = 1;
 }
};
//定义二叉树
class bst{
private:
 //清理整棵树
 //注意,一定一定要后续遍历的方法清理
 void destory(bstNode *cur){
  if(NULL == cur){
   return;
  }
  cout << "clearing" << endl;
  destory(cur->left);
  destory(cur->right);
  delete cur; //后续清理
 }
 //真正的删除节点
 void _del(bstNode * cur, bstNode *delNode);
public:
 bstNode * root = NULL;
 bst(){
  root = NULL;
 }
 //插入,返回值是便于构造parent关系
 bstNode * insert(bstNode *& cur, dNode data);
 //搜索
 bstNode * search(bstNode * cur, dNode data);
 //先序遍历
 void pre_raversal(bstNode *cur);
 //返回cur为根的节点的最小值
 bstNode * minNode(bstNode *cur);
 //得到cur节点的后继
 bstNode * succNode(bstNode *cur);
 //删除节点,如果count大于1就将count - 1,如果count==1就清除该节点,返回清除的节点的地址
 bstNode * del(bstNode *cur, dNode data);
 //构造函数对树做清理工作
 virtual ~bst(){
  cout << "###start clear###" << endl;
  this->destory(root);
  cout << "###clear ok###" << endl;
 }

};
bstNode * bst::insert(bstNode *& cur, dNode data){
 if(NULL == cur){
  bstNode * newNode = new bstNode();
  newNode->data = data;
  cur = newNode;
  return cur;
 }else if(cur->data == data){
  cur->count++;
 }else if(cur->data > data){
  bst::insert(cur->left, data)->parent = cur;
 }else if(cur->data < data){
  bst::insert(cur->right, data)->parent = cur;
 }
}
bstNode * bst::search(bstNode *cur, dNode data){
 if(NULL == cur){
  return NULL;
 }else if(cur->data == data){
  return cur;
 }else if(cur->data > data){
  return cur->left;
 }else if(cur->data < data){
  return cur->right;
 }
}
void bst::pre_raversal(bstNode *cur){
 if(NULL == cur)
  return;
 bst::pre_raversal(cur->left);
 cout << "count: " << cur->count << endl;
 cur->data.show();
 bst::pre_raversal(cur->right);
}
bstNode * bst::minNode(bstNode *cur){
 if(NULL == cur){
  return NULL; //如果根节点是空,就返回空
 }else{
  if(NULL != cur->left){
   return minNode(cur->left);
  }
 }
}
/**
* 非递归
* 后继就是比cur节点刚好大一点儿的节点A(排序之后),那么思
* 路就是找cur节点的右子树中的最小值或者是在cur的祖先中找到第一个比刚好大一点儿的那个节点
* ***找到A有两种情况:
* 1.cur节点有右子树,那么就找右子树的最小值节点就好了
* 2.cur节点没有右子树,那么一级一级的向祖先找,直到某个祖先节点A满足,
*   A的左孩子是cur的祖先,因为当A的左孩子是cur祖先就说明查找路线在想右
*   偏了,之前一直是往左边偏
*/
bstNode * bst::succNode(bstNode *cur){
 if(NULL != cur->right){
  return minNode(cur);
 }
 bstNode * parentNode = cur->parent;
 while(NULL != parentNode && parentNode->right == cur){
  cur = parentNode;
  parentNode = parentNode->parent;
 }
 return parentNode;
}

/**
*
* 删除c节点,这个是最难的
* 规定:要删除的节点是c, c的父节点是p, c的后继是s,c的左孩子是l,有孩子是r
* 删除c整个节点(不是count-1)分三种情况
* 1. c节点没有孩子,直接删除
* 2. c节点有一个孩子,那么直接将孩子节点(l或r)指向c的父节点p(p也要执行l或r)
* 3. c有两个孩子,那么需要用后继节s点里面的数据掉替换c节点里面的数据,然后再删除s节点
*    同时需要将s父子之间的指向关系处理好
*/
void bst::_del(bstNode * cur, bstNode *delNode){
 if(NULL == delNode->left || NULL == delNode->right){
  //待续
 }
}

/**
*接口:
*跟count有关的删除
*/
bstNode * bst::del(bstNode *cur, dNode data){
 //先找到需要删除的节点
 bstNode * delNode = this->search(cur, data);
 if(NULL == delNode) //没有找到该节点,无需删除
  return NULL;
 if(delNode->count == 1){
  _del(this->root, delNode);
 }else{
  delNode->count--;
 }
}

int main(){
 bst *root = new bst();
 //构造50个人, 重复的虽然在树中不会重复插入,但是会被计数
 int num = 50;
 for(int i = 0; i < num; i++){
  dNode * newData = new dNode("Luo", rand() % 15, rand() % 2);
  root->insert(root->root, *newData);
 }
 //前序遍历
 root->pre_raversal(root->root);

bstNode *searchNode = root->search(root->root, *new dNode("Luo", 3, 1));
 cout << "#######search a Node ##########" << endl;
 if(NULL == searchNode){
  cout << "没有找到该节点" << endl;
 }else{
  cout << "count: " << searchNode->count << endl;
  searchNode->data.show();
 }
 //清理整棵树
 delete root;

return 0;
}

(0)

相关推荐

  • C/C++中提高查找速度的小技巧

    前言 当看到题目是在一个数组中查找某一个元素,或是在一个字符串中查找某个字符,我们一般都会写出如下代码.但这样的代码虽然简洁明了,但在数组元素很多的情况下,并不是一个很好的解决方案,今天我就来分享一个提高查找速度的小技巧. //在一个int数组中查找某个元素 int find(int A[],int n,int element) { for( int i = 0; i < n; i++ ) { if( A[i] == element ) return i; } return -1; } //在一

  • C++内存查找实例

    本文实例讲述了C++内存查找的方法,分享给大家供大家参考.具体如下: windows程序设计中的内存查找功能,主程序代码如下: 复制代码 代码如下: // MemRepair.cpp : 定义控制台应用程序的入口点.  //    #include "stdafx.h"  #include <Windows.h>    BOOL FindFirst(DWORD dwValue);  BOOL FindNext(DWORD dwValue);  HANDLE g_hProce

  • C++实现查找中位数的O(N)算法和Kmin算法

    本文实例讲述了C++实现查找中位数的O(N)算法和Kmin算法,分享给大家供大家参考.具体方法如下: 利用快速排序的partition操作来完成O(N)时间内的中位数的查找算法如下: #include <iostream> #include <cassert> #include <algorithm> #include <iterator> using namespace std; int array[] = {1, 2, 10, 8, 9, 7, 5};

  • c++双向链表操作示例(创建双向链、双向链表中查找数据、插入数据等)

    双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点.一般我们都构造双向循环链表. (1)定义双向链表的基本结构 复制代码 代码如下: typedef struct _DOUBLE_LINK_NODE  {      int data;      struct _DOUBLE_LINK_NODE* prev;      struct _DOUBLE_LINK_NODE* nex

  • C++之BOOST字符串查找示例

    本文实例讲述了C++中BOOST字符串查找的方法,分享给大家供大家参考.具体方法如下: BOOST  字符串查找示例 复制代码 代码如下: #include <string>  #include <iostream>  #include <algorithm>  #include <functional>  #include <boost/algorithm/string/case_conv.hpp>  #include <boost/al

  • C++实现多线程查找文件实例

    主要是多线程的互斥 文件 的查找 多线程互斥的框架 复制代码 代码如下: //线程函数  UINT FinderEntry(LPVOID lpParam)  {      //CRapidFinder通过参数传递进来       CRapidFinder* pFinder = (CRapidFinder*)lpParam;      CDirectoryNode* pNode = NULL;      BOOL bActive = TRUE; //bActive为TRUE,表示当前线程激活   

  • 二分查找算法在C/C++程序中的应用示例

    二分查找算法的思想很简单,<编程珠玑>中的描述: 在一个包含t的数组内,二分查找通过对范围的跟综来解决问题.开始时,范围就是整个数组.通过将范围中间的元素与t比较并丢弃一半范围,范围就被缩小.这个过程一直持续,直到在t被发现,或者那个能够包含t的范围已成为空.         Donald Knuth在他的<Sorting and Searching>一书中指出,尽管第一个二分查找算法早在1946年就被发表,但第一个没有bug的二分查找算法却是在12年后才被发表出来.其中常见的一个

  • C++二分法在数组中查找关键字的方法

    本文实例讲述了C++二分法在数组中查找关键字的方法.分享给大家供大家参考.具体如下: /* 此程序演示了二分法查找算法(针对按从小到大排列的数组)的实现. */ #include <iostream> using namespace std; /* 功能: 实现数组的二分法查找(只算法只适合按从小到大排列的数组) 返回值:关键字在数组中的下标, 返回-1表示未找到 a[]: 要搜索的数组 len: 数组元素个数 key: 要查找的关键字 */ int binSearch(int a[], in

  • C++ 先对数组排序,在进行折半查找

    第一步:输入15个整数 第二步:对这15个数进行排序 第三部:输入一个数,在后在排好序的数中进行折半查找,判断该数的位置 实现代码如下: 方法一: 选择排序法+循环折半查找法 复制代码 代码如下: #include<iostream>using namespace std;int main(){ int a[15]; int n,i; void array_sort(int a[], int n); int zeban(int a[], int start ,int end,int n); c

  • C++利用容器查找重复列功能实现

    复制代码 代码如下: # include <vector> # include <iostream> # include <set> using namespace std; int main(int argc, char * argv[]) { vector<int> v; //找一些数据来测试 for (int i = 0; i < 50; i++) v.push_back(rand() % 25); for (int i = 0; i <

随机推荐