pandas.dataframe中根据条件获取元素所在的位置方法(索引)
在dataframe中根据一定的条件,得到符合要求的某行元素所在的位置。
代码如下所示:
df = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4],'attr': [22, 33, 22, 44, 66]}, index=[10,20,30,40,50]) print(df) a = df[(df.BoolCol==3)&(df.attr==22)].index.tolist() print(a)
df如下所示,以上通过选取“BoolCol”取值为3且“attr”取值为22的行,得到该行在df中的位置
注意:返回的位置为index列表,根据index的不同而不同,这点易于数组中默认的下标。
BoolCol attr 10 1 22 20 2 33 30 3 22 40 3 44 50 4 66 [30]
以上这篇pandas.dataframe中根据条件获取元素所在的位置方法(索引)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
pandas系列之DataFrame 行列数据筛选实例
一.对DataFrame的认知 DataFrame的本质是行(index)列(column)索引+多列数据. 为了简化理解,我们不妨换个思路- 现实中,为了简化对一件事物的描述,我们会选择几个特征. 例如,从(性别.身高.学历.职业.爱好..)等角度去刻画一个人,这些"角度"即为"特征". 其中,不同的行表示不同的记录:列代表特征,不同记录因各个特征之间的差异而不同. DataFrame默认索引是序号(0,1,2-),可以理解成位置索引.一般我们用id标识不同记录,
-
pandas.dataframe按行索引表达式选取方法
需要把一个从csv文件里读取来的数据集等距抽样分割,这里用到了列表表达式和dataframe.iloc 先生成索引列表: index_list = ['%d' %i for i in range(df.shape[0]) if i % 3 == 0] 在dataframe中选取 sample_df = df.iloc[index_list] 合起来 sample_df = df.iloc[['%d' %i for i in range(df.shape[0]) if i % 3 == 0]] 各
-
pandas.DataFrame选取/排除特定行的方法
pandas.DataFrame选取特定行 使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. >>> df = pd.DataFrame([['GD', 'GX', 'FJ'], ['SD', 'SX', 'BJ'], ['HN', 'HB', 'AH'], ['HEN', 'HEN', 'HL
-
pandas中的DataFrame按指定顺序输出所有列的方法
问题: 输出新建的DataFrame对象时,DataFrame中各列的显示顺序和DataFrame定义中的顺序不一致. 例如: import pandas as pd grades = [48,99,75,80,42,80,72,68,36,78] df = pd.DataFrame( {'ID': ["x%d" % r for r in range(10)], 'Gender' : ['F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'M'],
-
pandas实现选取特定索引的行
如下所示: >>> import numpy as np >>> import pandas as pd >>> index=np.array([2,4,6,8,10]) >>> data=np.array([3,5,7,9,11]) >>> data=pd.DataFrame({'num':data},index=index) >>> print(data) num 2 3 4 5 6 7 8 9
-
用pandas中的DataFrame时选取行或列的方法
如下所示: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w #选择表格
-
pandas.dataframe中根据条件获取元素所在的位置方法(索引)
在dataframe中根据一定的条件,得到符合要求的某行元素所在的位置. 代码如下所示: df = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4],'attr': [22, 33, 22, 44, 66]}, index=[10,20,30,40,50]) print(df) a = df[(df.BoolCol==3)&(df.attr==22)].index.tolist() print(a) df如下所示,以上通过选取"BoolCol"取
-
详解pandas.DataFrame中删除包涵特定字符串所在的行
你在使用pandas处理DataFrame中是否遇到过如下这类问题?我们需要删除某一列所有元素中含有固定字符元素所在的行,比如下面的例子: 以上所述是小编给大家介绍的pandas.DataFrame中删除包涵特定字符串所在的行详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的.在此也非常感谢大家对我们网站的支持!
-
Pandas DataFrame中的tuple元素遍历的实现
pandas中遍历dataframe的每一个元素 假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字 那么可以用python的pandas库来实现. 方法一: pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多.如下是相关代码: import pandas as pd data = [["str","ewt"
-
在Pandas DataFrame中插入一列的方法实例
目录 引言 示例1:插入新列作为第一列 示例2:插入新列作为中间列 示例3:插入新列作为最后一列 补充:按条件选择分组分别赋值 总结 引言 通常,您可能希望在 Pandas DataFrame 中插入一个新列.幸运的是,使用 pandas insert()函数很容易做到这一点,该函数使用以下语法: insert(loc, column, value, allow_duplicates=False) 在哪里: loc: 插入列的索引.第一列是 0. column: 赋予新列的名称. value:
-
pandas.DataFrame中提取特定类型dtype的列
目录 select_dtypes()的基本用法 指定要提取的类型:参数include 指定要排除的类型:参数exclude pandas.DataFrame为每一列保存一个数据类型dtype. 要仅提取(选择)特定数据类型为dtype的列,请使用pandas.DataFrame的select_dtypes()方法. 以带有各种数据类型的列的pandas.DataFrame为例. import pandas as pd df = pd.DataFrame({'a': [1, 2, 1, 3],
-
php获取数组元素中头一个数组元素值的实现方法
本文实例讲述了php获取数组元素中头一个数组元素值的实现方法.分享给大家供大家参考.具体如下: 在php的内置函数中,获取数组元素值的函数主要有 reset next current prev end 这几个函数. reset (PHP 3, PHP 4, PHP 5) 函数定义:mixed reset ( array &array ) 作用:该函数将 array 的内部指针倒回到第一个单元并返回第一个数组单元的值,如果数组为空则返回 FALSE,代码如下: 复制代码 代码如下: $array=
-
如何更改 pandas dataframe 中两列的位置
如何更改 pandas dataframe 中两列的位置: 把其中的某列移到第一列的位置. 原来的 df 是: df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01.csv') Net Upper Lower Mid Zsore Answer option More than once a day 0% 0.22% -0.12% 2 65 Once a day 0% 0.32% -0.19% 3 45 Sever
-
pandas dataframe 中的explode函数用法详解
在使用 pandas 进行数据分析的过程中,我们常常会遇到将一行数据展开成多行的需求,多么希望能有一个类似于 hive sql 中的 explode 函数. 这个函数如下: Code # !/usr/bin/env python # -*- coding:utf-8 -*- # create on 18/4/13 import pandas as pd def dataframe_explode(dataframe, fieldname): temp_fieldname = fieldname
-
一文详解Vue3中使用ref获取元素节点
目录 静态绑定 onMounted nextTick watchEffect watch v-for中使用 动态绑定 ref设置函数 通过getCurrentInstance方法 获取vue实例 前言: 本文介绍在vue3的setup中使用composition API获取元素节点的几种方法: 静态绑定 仅仅需要申明一个ref的引用,用来保存元素,在template中,不必bind引用(:ref="domRef"),只需要声明一个同名的ref属性(ref="domRef&qu
-
Python 处理 Pandas DataFrame 中的行和列
目录 处理列 处理行 前言: 数据框是一种二维数据结构,即数据以表格的方式在行和列中对齐.我们可以对行/列执行基本操作,例如选择.删除.添加和重命名.在本文中,我们使用的是nba.csv文件. 处理列 为了处理列,我们对列执行基本操作,例如选择.删除.添加和重命名. 列选择:为了在 Pandas DataFrame 中选择一列,我们可以通过列名调用它们来访问这些列. # Import pandas package import pandas as pd # 定义包含员工数据的字典 data =
随机推荐
- 图像图表
- SQL Server中利用正则表达式替换字符串的方法
- EditPlus v2.30 注册码
- iOS轻点、触摸和手势代码开发
- 老司机传授Ubuntu下Apache+PHP+MySQL环境搭建攻略
- C#实现异步连接Sql Server数据库的方法
- 获取数组中最大最小值方法js代码(自写)
- nc.exe高级技巧应用汇总
- Python语言实现获取主机名根据端口杀死进程
- 裁剪字符串trim()自定义改进版
- PHP+JavaScript实现无刷新上传图片
- android递归压缩上传多张图片到七牛的实例代码
- java多线程编程之Synchronized块同步方法
- PHP 中检查或过滤IP地址的实现代码
- asp.net之生成验证码的方法集锦(一)
- 使用python进行服务器的监控
- linux系统下创建lvm挂载到指定目录的操作步骤
- python kmeans聚类简单介绍和实现代码
- PHP开发api接口安全验证的实例讲解
- SpringBoot JdbcTemplate批量操作的示例代码