对numpy的array和python中自带的list之间相互转化详解

a=([3.234,34,3.777,6.33])

a为python的list类型

将a转化为numpy的array:

np.array(a)
array([ 3.234, 34. , 3.777, 6.33 ])

将a转化为python的list

a.tolist()

以上这篇对numpy的array和python中自带的list之间相互转化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python创建二维数组实例(关于list的一个小坑)
  • python中字符串变二维数组的实例讲解
  • 基于Python Numpy的数组array和矩阵matrix详解
  • 基于Python中numpy数组的合并实例讲解
  • 利用numpy实现一、二维数组的拼接简单代码示例
  • Python中的二维数组实例(list与numpy.array)
(0)

相关推荐

  • Python中的二维数组实例(list与numpy.array)

    关于python中的二维数组,主要有list和numpy.array两种. 好吧,其实还有matrices,但它必须是2维的,而numpy arrays (ndarrays) 可以是多维的. 我们主要讨论list和numpy.array的区别: 我们可以通过以下的代码看出二者的区别 >>import numpy as np >>a=[[1,2,3],[4,5,6],[7,8,9]] >>a [[1,2,3],[4,5,6],[7,8,9]] >>type(a

  • 利用numpy实现一、二维数组的拼接简单代码示例

    一维数组 1.numpy初始化一维数组 a = np.array([1,2,3]); print a.shape 输出的值应该为(3,) 二维数组 2.numpy初始化二维数组 a = np.array([[1,2,3]]); b = np.array([[1],[2],[3]]); print a.shape//(1,3) print b.shape//(3,1) 注意(3,)和(3,1)的数组是不一样的,前者是一维数组,后者是二维数组. 拼接 3.numpy有很多的拼接函数.比如hstack

  • python中字符串变二维数组的实例讲解

    有一道算法题题目的意思是在二维数组里找到一个峰值.要求复杂度为n. 解题思路是找田字(四边和中间横竖两行)中最大值,用分治法递归下一个象限的田字. 在用python定义一个二维数组时可以有list和numpy.array两种方式,看了几篇python中二维数组的建立的博客发现大多都是建立的初始化的二维数组,而我需要通过文件读取得到的是字符串,再把字符串转换为二维数组,找不到解决方法还是决定自己来转换. 首先,最开始的字符串输出如下,数字之间有空格 思路就是把先按换行符进行切片,再对每一行的字符再

  • Python创建二维数组实例(关于list的一个小坑)

    0.目录 1.遇到的问题 2.创建二维数组的办法 •3.1 直接创建法 •3.2 列表生成式法 •3.3 使用模块numpy创建 1.遇到的问题 今天写Python代码的时候遇到了一个大坑,差点就耽误我交作业了... 问题是这样的,我需要创建一个二维数组,如下: m = n = 3 test = [[0] * m] * n print("test =", test) 输出结果如下: test = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 是不是看起来没有一点问

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • 基于Python中numpy数组的合并实例讲解

    Python中numpy数组的合并有很多方法,如 - np.append() - np.concatenate() - np.stack() - np.hstack() - np.vstack() - np.dstack() 其中最泛用的是第一个和第二个.第一个可读性好,比较灵活,但是占内存大.第二个则没有内存占用大的问题. 方法一--append parameters introduction arr 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) values 用来合并到上述数组

  • 对numpy的array和python中自带的list之间相互转化详解

    a=([3.234,34,3.777,6.33]) a为python的list类型 将a转化为numpy的array: np.array(a) array([ 3.234, 34. , 3.777, 6.33 ]) 将a转化为python的list a.tolist() 以上这篇对numpy的array和python中自带的list之间相互转化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python创建二维数组实例(关于list的一个

  • 对python中数据集划分函数StratifiedShuffleSplit的使用详解

    文章开始先讲下交叉验证,这个概念同样适用于这个划分函数 1.交叉验证(Cross-validation) 交叉验证是指在给定的建模样本中,拿出其中的大部分样本进行模型训练,生成模型,留小部分样本用刚建立的模型进行预测,并求这小部分样本的预测误差,记录它们的平方加和.这个过程一直进行,直到所有的样本都被预测了一次而且仅被预测一次,比较每组的预测误差,选取误差最小的那一组作为训练模型. 下图所示 2.StratifiedShuffleSplit函数的使用 官方文档 用法: from sklearn.

  • Python中八大图像特效算法的示例详解

    目录 0写在前面 1毛玻璃特效 2浮雕特效 3油画特效 4马赛克特效 5素描特效 6怀旧特效 7流年特效 8卡通特效 0 写在前面 图像特效处理是基于图像像素数据特征,将原图像进行一定步骤的计算——例如像素作差.灰度变换.颜色通道融合等,从而达到期望的效果.图像特效处理是日常生活中应用非常广泛的一种计算机视觉应用,出现在各种美图软件中,这些精美滤镜背后的数学原理都是相通的,本文主要介绍八大基本图像特效算法,在这些算法基础上可以进行二次开发,生成更高级的滤镜. 本文采用面向对象设计,定义了一个图像

  • Python 中 Virtualenv 和 pip 的简单用法详解

    本文介绍了Python 中 Virtualenv 和 pip 的简单用法详解,分享给大家,具体如下: 0X00 安装环境 我们在 Python 开发和学习过程中需要用到各种库,然后在各个不同的项目和作品里可能用的版本还不一样,正因为有这种问题的存在才催生了virtualenv的诞生.virtualenv 可以在电脑上创建一个虚拟环境,可以针对每一个项目创建一个虚拟环境,这样就不用担心各个不同的项目用不同版本的库的时候出现的冲突了. 下面的内容只适用于 Linux/OSX,未经 Windows 环

  • python中函数总结之装饰器闭包详解

    1.前言 函数也是一个对象,从而可以增加属性,使用句点来表示属性. 如果内部函数的定义包含了在外部函数中定义的对象的引用(外部对象可以是在外部函数之外),那么内部函数被称之为闭包. 2.装饰器 装饰器就是包装原来的函数,从而在不需要修改原来代码的基础之上,可以做更多的事情. 装饰器语法如下: @deco2 @deco1 def func(arg1,arg2...): pass 这个表示了有两个装饰器的函数,那么表示的含义为:func = deco2(deco1(func)) 无参装饰器语法如下:

  • python中 chr unichr ord函数的实例详解

    python中 chr unichr ord函数的实例详解 chr()函数用一个范围在range(256)内的(就是0-255)整数作参数,返回一个对应的字符.unichr()跟它一样,只不过返回的是Unicode字符,这个从Python 2.0才加入的unichr()的参数范围依赖于你的python是如何被编译的.如果是配置为USC2的Unicode,那么它的允许范围就是range(65536)或0x0000-0xFFFF:如果配置为UCS4,那么这个值应该是range(1114112)或0x

  • python中函数默认值使用注意点详解

    当在函数中定义默认值时,值初始化只会进行一次,就是执行到def methodname时执行.看下面代码: from datetime import datetime def test(t=datetime.today()): print t if __name__ == "__main__": test() test() 两次方法调用输出的时间都为同一个值,而不是我们预想当前执行时间.对于上面这种情况,建议用下面的方式实现: from datetime import datetime

  • Python中set与frozenset方法和区别详解

    set(可变集合)与frozenset(不可变集合)的区别: set无序排序且不重复,是可变的,有add(),remove()等方法.既然是可变的,所以它不存在哈希值.基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交集), difference(差集)和sysmmetric difference(对称差集)等数学运算. sets 支持 x in set, len(set),和 for x in set.作为一个无序的集合,sets不记录元素位

  • 对python中字典keys,values,items的使用详解

    在python中对字典进行遍历时,可以直接使用如下模式: dict = {"name": "jack", "age": 15, "height": 1.75} for k in dict.keys(): print(k) 使用keys方法遍历得到的是key,可以依次输出,但是当单独使用dict.keys() 时,得到的结果时dict.keys类,属于迭代器,此时并不能使用列表的下标,需要转换一下,方法如下: 直接使用list(

  • 对python中if语句的真假判断实例详解

    说明 在python中,if作为条件语句,当if后面的条件参数为真时,则执行后面的语句块,反之跳过,为了深入理解if语句,我们需要知道if语句的真假判断方式. 示例 在python交互器中,经过测试发现以下条件均为假,相当于False In [2]: if '': ...: print('ok') ...: In [3]: if 0: ...: print('ok') ...: In [4]: if None: ...: print('ok') ...: In [5]: if []: ...:

随机推荐