Linux通过匿名管道进行进程间通信

本文研究的主要是Linux通过匿名管道进行进程间通信的相关内容,具体介绍如下。

在前面,介绍了一种进程间的通信方式:使用信号,我们创建通知事件,并通过它引起响应,但传递的信息只是一个信号值。这里将介绍另一种进程间通信的方式——匿名管道,通过它进程间可以交换更多有用的数据。

一、什么是管道

如果你使用过Linux的命令,那么对于管道这个名词你一定不会感觉到陌生,因为我们通常通过符号“|"来使用管道,但是管理的真正定义是什么呢?管道是一个进程连接数据流到另一个进程的通道,它通常是用作把一个进程的输出通过管道连接到另一个进程的输入。

举个例子,在shell中输入命令:ls -l | grep string,我们知道ls命令(其实也是一个进程)会把当前目录中的文件都列出来,但是它不会直接输出,而是把本来要输出到屏幕上的数据通过管道输出到grep这个进程中,作为grep这个进程的输入,然后这个进程对输入的信息进行筛选,把存在string的信息的字符串(以行为单位)打印在屏幕上。

二、使用popen函数

1、popen函数和pclose函数介绍

有静就有动,有开就有关,与此相同,与popen函数相对应的函数是pclose函数,它们的原型如下:

#include <stdio.h>
FILE* popen (const char *command, const char *open_mode);
int pclose(FILE *stream_to_close); 

poen函数允许一个程序将另一个程序作为新进程来启动,并可以传递数据给它或者通过它接收数据。command是要运行的程序名和相应的参数。open_mode只能是"r(只读)"和"w(只写)"的其中之一。注意,popen函数的返回值是一个FILE类型的指针,而Linux把一切都视为文件,也就是说我们可以使用stdio I/O库中的文件处理函数来对其进行操作。

如果open_mode是"r",主调用程序就可以使用被调用程序的输出,通过函数返回的FILE指针,就可以能过stdio函数(如fread)来读取程序的输出;如果open_mode是"w",主调用程序就可以向被调用程序发送数据,即通过stdio函数(如fwrite)向被调用程序写数据,而被调用程序就可以在自己的标准输入中读取这些数据。

pclose函数用于关闭由popen创建出的关联文件流。pclose只在popen启动的进程结束后才返回,如果调用pclose时被调用进程仍在运行,pclose调用将等待该进程结束。它返回关闭的文件流所在进程的退出码。

2、例子

很多时候,我们根本就不知道输出数据的长度,为了避免定义一个非常大的数组作为缓冲区,我们可以以块的方式来发送数据,一次读取一个块的数据并发送一个块的数据,直到把所有的数据都发送完。下面的例子就是采用这种方式的数据读取和发送方式。源文件名为popen.c,代码如下:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h> 

int main()
{
  FILE *read_fp = NULL;
  FILE *write_fp = NULL;
  char buffer[BUFSIZ + 1];
  int chars_read = 0; 

  //初始化缓冲区
  memset(buffer, '\0', sizeof(buffer));
  //打开ls和grep进程
  read_fp = popen("ls -l", "r");
  write_fp = popen("grep rwxrwxr-x", "w");
  //两个进程都打开成功
  if(read_fp && write_fp)
  {
    //读取一个数据块
    chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
    while(chars_read > 0)
    {
      buffer[chars_read] = '\0';
      //把数据写入grep进程
      fwrite(buffer, sizeof(char), chars_read, write_fp);
      //还有数据可读,循环读取数据,直到读完所有数据
      chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
    }
    //关闭文件流
    pclose(read_fp);
    pclose(write_fp);
    exit(EXIT_SUCCESS);
  }
  exit(EXIT_FAILURE);
} 

运行结果如下:

从运行结果来看,达到了信息筛选的目的。程序在进程ls中读取数据,再把数据发送到进程grep中进行筛选处理,相当于在shell中直接输入命令:ls -l | grep rwxrwxr-x。

3、popen的实现方式及优缺点

当请求popen调用运行一个程序时,它首先启动shell,即系统中的sh命令,然后将command字符串作为一个参数传递给它。

这样就带来了一个优点和一个缺点。优点是:在Linux中所有的参数扩展都是由shell来完成的。所以在启动程序(command中的命令程序)之前先启动shell来分析命令字符串,也就可以使各种shell扩展(如通配符)在程序启动之前就全部完成,这样我们就可以通过popen启动非常复杂的shell命令。

而它的缺点就是:对于每个popen调用,不仅要启动一个被请求的程序,还要启动一个shell,即每一个popen调用将启动两个进程,从效率和资源的角度看,popen函数的调用比正常方式要慢一些。

三、pipe调用

如果说popen是一个高级的函数,pipe则是一个底层的调用。与popen函数不同的是,它在两个进程之间传递数据不需要启动一个shell来解释请求命令,同时它还提供对读写数据的更多的控制。

pipe函数的原型如下:

#include <unistd.h>
int pipe(int file_descriptor[2]); 

我们可以看到pipe函数的定义非常特别,该函数在数组中墙上两个新的文件描述符后返回0,如果返回返回-1,并设置errno来说明失败原因。

数组中的两个文件描述符以一种特殊的方式连接起来,数据基于先进先出的原则,写到file_descriptor[1]的所有数据都可以从file_descriptor[0]读回来。由于数据基于先进先出的原则,所以读取的数据和写入的数据是一致的。

特别提醒:

1、从函数的原型我们可以看到,它跟popen函数的一个重大区别是,popen函数是基于文件流(FILE)工作的,而pipe是基于文件描述符工作的,所以在使用pipe后,数据必须要用底层的read和write调用来读取和发送。

2、不要用file_descriptor[0]写数据,也不要用file_descriptor[1]读数据,其行为未定义的,但在有些系统上可能会返回-1表示调用失败。数据只能从file_descriptor[0]中读取,数据也只能写入到file_descriptor[1],不能倒过来。

例子:

首先,我们在原先的进程中创建一个管道,然后再调用fork创建一个新的进程,最后通过管道在两个进程之间传递数据。源文件名为pipe.c,代码如下:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h> 

int main()
{
  int data_processed = 0;
  int filedes[2];
  const char data[] = "Hello pipe!";
  char buffer[BUFSIZ + 1];
  pid_t pid;
  //清空缓冲区
  memset(buffer, '\0', sizeof(buffer)); 

  if(pipe(filedes) == 0)
  {
    //创建管道成功
    //通过调用fork创建子进程
    pid = fork();
    if(pid == -1)
    {
      fprintf(stderr, "Fork failure");
      exit(EXIT_FAILURE);
    }
    if(pid == 0)
    {
      //子进程中
      //读取数据
      data_processed = read(filedes[0], buffer, BUFSIZ);
      printf("Read %d bytes: %s\n", data_processed, buffer);
      exit(EXIT_SUCCESS);
    }
    else
    {
      //父进程中
      //写数据
      data_processed = write(filedes[1], data, strlen(data));
      printf("Wrote %d bytes: %s\n", data_processed, data);
      //休眠2秒,主要是为了等子进程先结束,这样做也只是纯粹为了输出好看而已
      //父进程其实没有必要等等子进程结束
      sleep(2);
      exit(EXIT_SUCCESS);
    }
  }
  exit(EXIT_FAILURE);
} 

运行结果为:

可见,子进程读取了父进程写到filedes[1]中的数据,如果在父进程中没有sleep语句,父进程可能在子进程结束前结束,这样你可能将看到两个输入之间有一个命令提示符分隔。

四、把管道用作标准输入和标准输出

下面来介绍一种用管道来连接两个进程的更简洁方法,我们可以把文件描述符设置为一个已知值,一般是标准输入0或标准输出1。这样做最大的好处是可以调用标准程序,即那些不需要以文件描述符为参数的程序。

为了完成这个工作,我们还需要两个函数的辅助,它们分别是dup函数或dup2函数,它们的原型如下

#include <unistd.h>
int dup(int file_descriptor);
int dup2(int file_descriptor_one, int file_descriptor_two); 

dup调用创建一个新的文件描述符与作为它的参数的那个已有文件描述符指向同一个文件或管道。对于dup函数而言,新的文件描述总是取最小的可用值。而dup2所创建的新文件描述符或者与int file_descriptor_two相同,或者是第一个大于该参数的可用值。所以当我们首先关闭文件描述符0后调用dup,那么新的文件描述符将是数字0.

例子

在下面的例子中,首先打开管道,然后fork一个子进程,然后在子进程中,使标准输入指向读管道,然后关闭子进程中的读管道和写管道,只留下标准输入,最后调用execlp函数来启动一个新的进程od,但是od并不知道它的数据来源是管道还是终端。父进程则相对简单,它首先关闭读管道,然后在写管道中写入数据,再关闭写管道就完成了它的任务。源文件为pipe2.c,代码如下:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h> 

int main()
{
  int data_processed = 0;
  int pipes[2];
  const char data[] = "123";
  pid_t pid; 

  if(pipe(pipes) == 0)
  {
    pid = fork();
    if(pid == -1)
    {
      fprintf(stderr, "Fork failure!\n");
      exit(EXIT_FAILURE);
    }
    if(pid == 0)
    {
      //子进程中
      //使标准输入指向fildes[0]
      close(0);
      dup(pipes[0]);
      //关闭pipes[0]和pipes[1],只剩下标准输入
      close(pipes[0]);
      close(pipes[1]);
      //启动新进程od
      execlp("od", "od", "-c", 0);
      exit(EXIT_FAILURE);
    }
    else
    {
      //关闭pipes[0],因为父进程不用读取数据
      close(pipes[0]);
      data_processed = write(pipes[1], data, strlen(data));
      //写完数据后,关闭pipes[1]
      close(pipes[1]);
      printf("%d - Wrote %d bytes\n", getpid(), data_processed);
    }
  }
  exit(EXIT_SUCCESS);
} 

运行结果为:

从运行结果中可以看出od进程正确地完成了它的任务,与在shell中直接输入od -c和123的效果一样。

五、关于管道关闭后的读操作的讨论

现在有这样一个问题,假如父进程向管道file_pipe[1]写数据,而子进程在管道file_pipe[0]中读取数据,当父进程没有向file_pipe[1]写数据时,子进程则没有数据可读,则子进程会发生什么呢?再者父进程把file_pipe[1]关闭了,子进程又会有什么反应呢?

当写数据的管道没有关闭,而又没有数据可读时,read调用通常会阻塞,但是当写数据的管道关闭时,read调用将会返回0而不是阻塞。注意,这与读取一个无效的文件描述符不同,read一个无效的文件描述符返回-1。

六、匿名管道的缺陷

看了这么多相信大家也知道它的一个缺点,就是通信的进程,它们的关系一定是父子进程的关系,这就使得它的使用受到了一点的限制,但是我们可以使用命名管道来解决这个问题。命名管道将在下一篇文章:Linux进程间通信——使用命名管道中介绍。

总结

以上就是本文关于Linux通过匿名管道进行进程间通信的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

您可能感兴趣的文章:

  • linux使用管道命令执行ps获取cpu与内存占用率
  • Python中使用PIPE操作Linux管道
  • linux shell 管道命令(pipe)使用及与shell重定向区别
  • Linux平台php命令行程序处理管道数据的方法
  • linux C语言开发管道通信实例详解
  • Linux 下xargs命令详解及xargs与管道的区别
  • linux 匿名管道实例详解
  • linux 命名管道实例详解
(0)

相关推荐

  • linux使用管道命令执行ps获取cpu与内存占用率

    复制代码 代码如下: #include <stdio.h>#include <unistd.h>int main(){    char caStdOutLine[1024]; // ps 命令的标准输出中的一行信息    char* pcTmp = NULL;      // 指向以空格拆分后的字符串 char caSelfPID[10];      // 自身进程的PID字符串    char caPSCmd[24];        // "ps aux | grep

  • linux 命名管道实例详解

    linux进程间通信--命名管道 FIFO(命名管道)不同于匿名管道之处在于它提供⼀个路径名与之关联,以FIFO的⽂件形式存储于⽂件系统中.命名管道是⼀个设备⽂件,因此,即使进程与创建FIFO的进程不存在亲缘关系,只要可以访问该路径,就能够通过FIFO相互通信.值得注意的是,FIFO(first input first output)总是按照先进先出的原则⼯作,第⼀个被写⼊的数据将⾸先从管道中读出. 创建命名管道的系统函数有两个:mknod和mkfifo.两个函数均定义在头⽂件sys/stat.

  • linux shell 管道命令(pipe)使用及与shell重定向区别

    看了前面一节:linux shell数据重定向(输入重定向与输出重定向)详细分析 估计还有一些朋友是头晕晕的,好复杂的重定向了.这次我们看下管道命令了.shell管道,可以说用法就简单多了. 管道命令操作符是:"|",它仅能处理经由前面一个指令传出的正确输出信息,也就是 standard output 的信息,对于 stdandard error 信息没有直接处理能力.然后,传递给下一个命令,作为标准的输入 standard input. 管道命令使用说明: 先看下下面图: comma

  • linux C语言开发管道通信实例详解

    linux C语言开发管道通信 Linux系统本身为进程间通信提供了很多的方式,比如说管道.共享内存.socket通信等.管道的使用十分简单,在创建了匿名管道之后,我们只需要从一个管道发送数据,再从另外一个管道接受数据即可. #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> int pipe_default[2]; int main() { pid_t

  • Linux 下xargs命令详解及xargs与管道的区别

    为什么要用xargs,问题的来源 在工作中经常会接触到xargs命令,特别是在别人写的脚本里面也经常会遇到,但是却很容易与管道搞混淆,本篇会详细讲解到底什么是xargs命令,为什么要用xargs命令以及与管道的区别.为什么要用xargs呢,我们知道,linux命令可以从两个地方读取要处理的内容,一个是通过命令行参数,一个是标准输入.例如cat.grep就是这样的命令,举个例子: echo 'main' | cat test.cpp 这种情况下cat会输出test.cpp的内容,而不是'main'

  • linux 匿名管道实例详解

    linux中进程的一种通信方式--匿名管道 pipe函数建立管道 调用pipe函数时在内核中开辟一块缓冲区(称为管道)用于通信,它有一个读端一个写端,然后通过_pipe参数传出给用户程序两个文件描述符,_pipe[0]指向管道的读端,_pipe[1]指向管道的写端.所以管道在用户程序看起来就像一个打开的文件,通过read(_pipe[0]);或者write(_pipe[1]);向这个文件读写数据其实是在读写内核缓冲区.pipe函数调用成功返回0,调用失败返回-1. 1父进程调用pipe开辟管道,

  • Python中使用PIPE操作Linux管道

    Linux中进程的通信方式有信号,管道,共享内存,消息队列socket等.其中管道是*nix系统进程间通信的最古老形式,所有*nix都提供这种通信方式.管道是一种半双工的通信机制,也就是说,它只能一端用来读,另外一端用来写:另外,管道只能用来在具有公共祖先的两个进程之间通信.管道通信遵循先进先出的原理,并且数据只能被读取一次,当此段数据被读取后,马上会从数据中消失,这一点很重要. Linux上,创建管道使用pipe函数,当它执行后,会产生两个文件描述符,分别为读端和写端.单个进程中的管道几乎没有

  • Linux平台php命令行程序处理管道数据的方法

    本文实例讲述了Linux平台php命令行程序处理管道数据的方法.分享给大家供大家参考,具体如下: linux下有一个强大的命令|(管道提示符).它的作用是将前一个命令的结果交给后一条命令并作为后一条命令的输入.而linux下的大多数命令 也都支持这种方式.可是当笔者写完一个php的命令行小程序以后,对于怎样获得前一个命令的结果却陷入了僵局.难道php不支持这样的操作? 于是又开始问google大叔.找来找去,都是说php的命令行模式是怎么回事儿,也没有和我想知道的问题相关的资料.难道是俺的关键字

  • Linux通过匿名管道进行进程间通信

    本文研究的主要是Linux通过匿名管道进行进程间通信的相关内容,具体介绍如下. 在前面,介绍了一种进程间的通信方式:使用信号,我们创建通知事件,并通过它引起响应,但传递的信息只是一个信号值.这里将介绍另一种进程间通信的方式--匿名管道,通过它进程间可以交换更多有用的数据. 一.什么是管道 如果你使用过Linux的命令,那么对于管道这个名词你一定不会感觉到陌生,因为我们通常通过符号"|"来使用管道,但是管理的真正定义是什么呢?管道是一个进程连接数据流到另一个进程的通道,它通常是用作把一个

  • 解决linux ftp匿名上传、下载开机自启问题

    如果在平时学习,工作中经常使用 FTP 服务器 ,可以设置成开机自启,在设置之前要先了解几个关于自启的命令: 1.chkconfig 命令 主要作用:用于检查,设置系统的各种服务.其中有几个重要参数,先了解 --list ,chkconfig --list :列出 chkconfig 知道的所有命令,chkconfig 服务名 on /off :开启,关闭服务(一般是开机自启或是关闭) 2.检查是否设置 vsftpd 开机自启, chkconfig --list | grep vsftpd :"

  • Python进程通信之匿名管道实例讲解

    匿名管道 管道是一个单向通道,有点类似共享内存缓存.管道有两端,包括输入端和输出端.对于一个进程的而言,它只能看到管道一端,即要么是输入端要么是输出端. os.pipe()返回2个文件描述符(r, w),表示可读的和可写的.示例代码如下: 复制代码 代码如下: #!/usr/bin/python import time import os def child(wpipe):     print('hello from child', os.getpid())     while True:   

  • linux中的分号&&和&,|和||说明与用法

    在用linux命令时候,我们可以一行执行多条命令或者有条件的执行下一条命令,下面我们讲解一下linux命令分号&&和&,|和||的用法 ";"分号用法 方式:command1 ; command2 用;号隔开每个命令, 每个命令按照从左到右的顺序,顺序执行, 彼此之间不关心是否失败, 所有命令都会执行. "| "管道符用法 上一条命令的输出,作为下一条命令参数 方式:command1 | command2 Linux所提供的管道符"

  • 详解Linux进程间通信——使用共享内存

    一.什么是共享内存 顾名思义,共享内存就是允许两个不相关的进程访问同一个逻辑内存.共享内存是在两个正在运行的进程之间共享和传递数据的一种非常有效的方式.不同进程之间共享的内存通常安排为同一段物理内存.进程可以将同一段共享内存连接到它们自己的地址空间中,所有进程都可以访问共享内存中的地址,就好像它们是由用C语言函数malloc分配的内存一样.而如果某个进程向共享内存写入数据,所做的改动将立即影响到可以访问同一段共享内存的任何其他进程. 特别提醒:共享内存并未提供同步机制,也就是说,在第一个进程结束

  • 详解Python进程间通信之命名管道

    管道是一种简单的FIFO通信信道,它是单向通信的. 通常启动进程创建一个管道,然后这个进程创建一个或者多个进程子进程接受管道信息,由于管道是单向通信,所以经常需要创建两个管道来实现双向通信. 命名管道是对传统管道的扩展,默认的管道是匿名管道,只在程序运行时存在:而命名管道是持久化的,当不需要时需要删除它. 命名管道使用文件系统,由mkfifo()方法创建.一旦创建了,两个独立的进程都可以访问它,一个读,另外一个写. 命名管道支持阻塞读和阻塞写操作: 如果一个进程打开文件读,它会阻塞直到另外一个进

随机推荐