对pandas的算术运算和数据对齐实例详解
pandas可以对不同索引的对象进行算术运算,如果存在不同的索引对,结果的索引就是该索引对的并集。
一、算术运算
a、series的加法运算
s1 = Series([1,2,3],index=["a","b","c"]) s2 = Series([4,5,6],index=["a","c","e"]) print(s1+s2) ''' a 5.0 b NaN c 8.0 e NaN '''
sereis相加会自动进行数据对齐操作,在不重叠的索引处会使用NA(NaN)值进行填充,series进行算术运算的时候,不需要保证series的大小一致。
b、DataFrame的加法运算
d1 = np.arange(1,10).reshape(3,3) dataFrame1 = DataFrame(d1,index=["a","b","c"],columns=["one","two","three"]) d2 = np.arange(1,10).reshape(3,3) dataFrame2 = DataFrame(d2,index=["a","b","e"],columns=["one","two","four"]) print(dataFrame1+dataFrame2) ''' four one three two a NaN 2.0 NaN 4.0 b NaN 8.0 NaN 10.0 c NaN NaN NaN NaN e NaN NaN NaN NaN '''
dataFrame相加时,对齐操作需要行和列的索引都重叠的时候才回相加,否则会使用NA值进行填充。
二、指定填充值
s1 = Series([1,2,3],index=["a","b","c"]) s2 = Series([4,5,6],index=["a","c","e"]) print( s1.add(s2,fill_value=0)) ''' a 5.0 b 2.0 c 8.0 e 6.0 '''
需要注意的时候,使用add方法对两个series进行相加的时候,设置fill_value的值是对于不存在索引的series用指定值进行填充后再进行相加。除了加法add,还有sub减法,div除法,mul乘法,使用方式与add相同。DataFrame与series一样。
s1 = Series([1,2,3],index=["a","b","c"]) s2 = Series([4,5,6],index=["a","c","e"]) print(s2.reindex(["a","b","c","d"],fill_value=0)) ''' a 4 b 0 c 5 d 0 ''' s3 = s1 + s2 print(s3.reindex(["a","b","c","e"],fill_value=0)) ''' a 5.0 b NaN c 8.0 e NaN '''
使用reindex进行填充的时候,需要注意的是,不能对已经是值为NaN的进行重新赋值,只能对使用reindex之前不存在的所以使用指定的填充值,DataFrame也是一样的。
三、DataFrame与Series的混合运算
a、DataFrame的行进行广播
a = np.arange(9).reshape(3,3) d = DataFrame(a,index=["a","b","c"],columns=["one","two","three"]) #取d的第一行为Series s = d.ix[0] print(d+s) ''' one two three a 0 2 4 b 3 5 7 c 6 8 10 '''
b、DataFrame的列进行广播
a = np.arange(9).reshape(3,3) d = DataFrame(a,index=["a","b","c"],columns=["one","two","three"]) #取d的第一列为Series s = d["one"] print(d.add(s,axis=0)) ''' one two three a 0 1 2 b 6 7 8 c 12 13 14 '''
对列进行广播的时候,必须要使用add方法,而且还要将axis设置为0,不然就会得到下面的结果
print(d.add(s)) ''' a b c one three two a NaN NaN NaN NaN NaN NaN b NaN NaN NaN NaN NaN NaN c NaN NaN NaN NaN NaN NaN '''
以上这篇对pandas的算术运算和数据对齐实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
赞 (0)