Opencv+Python 色彩通道拆分及合并的示例
一、图像色彩通道拆分
import cv2 img1 = cv2.imread(r"D:\OpencvTest\example.jpg", cv2.IMREAD_COLOR) # 传入一张彩色图片 b, g, r = cv2.split(img1) cv2.imshow("exampleB", b) # 展示B通道图 cv2.imshow("exampleG", g) cv2.imshow("exampleR", r)
B通道图:
G通道图:
R通道图:
二、图像色彩通道合并
img2 = cv2.merge([r, g, b])
按RGB合并后图:
以上这篇Opencv+Python 色彩通道拆分及合并的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
python opencv检测目标颜色的实例讲解
实例如下所示: # -*- coding:utf-8 -*- __author__ = 'kingking' __version__ = '1.0' __date__ = '14/07/2017' import cv2 import numpy as np import time if __name__ == '__main__': Img = cv2.imread('example.png')#读入一幅图像 kernel_2 = np.ones((2,2),np.uint8)#2x2的卷积核
-
Python实现OpenCV的安装与使用示例
本文实例讲述了Python实现OpenCV的安装与使用.分享给大家供大家参考,具体如下: 由于下一步要开始研究下深度学习,而深度学习领域很多的算法和应用都是用Python来实现的,把Python转成C++代码耗时太多,不如直接学习下Python直接医用Python的代码.搭建Python环境的过程是很耗时的,但是现在回头来看又觉得其实没有多少步骤,主要是在自己不明白的时候老是会出现各种各样奇奇怪怪的问题.现在只是对正确的步骤做个记录吧. 环境搭建: 1.Python的安装,没什么可说的,一直下一
-
Python+OpenCV实现车牌字符分割和识别
最近做一个车牌识别项目,入门级别的,十分简单. 车牌识别总体分成两个大的步骤: 一.车牌定位:从照片中圈出车牌 二.车牌字符识别 这里只说第二个步骤,字符识别包括两个步骤: 1.图像处理 原本的图像每个像素点都是RGB定义的,或者称为有R/G/B三个通道.在这种情况下,很难区分谁是背景,谁是字符,所以需要对图像进行一些处理,把每个RGB定义的像素点都转化成一个bit位(即0-1代码),具体方法如下: ①将图片灰度化 名字拗口,但是意思很好理解,就是把每个像素的RGB都变成灰色的RGB值,而灰色的
-
Python-OpenCV基本操作方法详解
基本属性 cv2.imread(文件名,属性) 读入图像 属性:指定图像用哪种方式读取文件 cv2.IMREAD_COLOR:读入彩色图像,默认参数,Opencv 读取彩色图像为BGR模式 !!!注意 cv2.IMREAD_GRAYSCALE:读入灰度图像. cv2.imshow(窗口名,图像文件) 显示图像 可以创建多个窗口 cv2.waitKey() 键盘绑定函数 函数等待特定的几毫秒,看是否由键盘输入. cv2.namedWindow(窗口名,属性) 创建一个窗口 属性:指定窗口大小模式
-
Python+OpenCV人脸检测原理及示例详解
关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph
-
Opencv+Python 色彩通道拆分及合并的示例
一.图像色彩通道拆分 import cv2 img1 = cv2.imread(r"D:\OpencvTest\example.jpg", cv2.IMREAD_COLOR) # 传入一张彩色图片 b, g, r = cv2.split(img1) cv2.imshow("exampleB", b) # 展示B通道图 cv2.imshow("exampleG", g) cv2.imshow("exampleR", r) B通道
-
python中图像通道分离与合并实例
我就废话不多说了,直接上代码吧! import cv2 img = cv2.imread("1.jpg") b, g, r = cv2.split(img) #分离函数 merged = cv2.merge([b,g,r]) #合并函数 cv2.imshow('image',img) cv2.imshow("Blue 1", b) cv2.imshow("Green 1", g) cv2.imshow("Red 1", r)
-
OpenCV中图像通道操作的深入讲解
目录 1.基本介绍 2.通道拆分 2.1通过索引拆分 2.2通过函数拆分 3.通道合并 总结 1.基本介绍 在OpenCV中,图像通道是按照 B 通道→G 通道→R 通道的顺序存储的.在图像处理过程中,可以根据需要对通道进行拆分和合并. 2.通道拆分 对于RGB图像,可以索引的方式或者函数的方式分别拆分出其RGB通道. b = img[ : , : , 0 ] g = img[ : , : , 1 ] r = img[ : , : , 2 ] 2.1通过索引拆分 import cv2 lena=
-
Python OpenCV 直方图的计算与显示的方法示例
本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了.这里直接介绍方法. 计算并显示直方图 与C++中一样,在Python中调用的OpenCV直方图计算函数为cv2.calcHist. cv2.calcHist的原型为: cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]]) #返回his
-
opencv python如何实现图像二值化
这篇文章主要介绍了opencv python如何实现图像二值化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑,之后为白 # 有全局和局部两种 # 在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答
-
OpenCV python sklearn随机超参数搜索的实现
本文介绍了OpenCV python sklearn随机超参数搜索的实现,分享给大家,具体如下: """ 房价预测数据集 使用sklearn执行超参数搜索 """ import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import sklearn import pandas as pd import os import sys import tens
-
python实现暗通道去雾算法的示例
何凯明博士的去雾文章和算法实现已经漫天飞了,我今天也就不啰里啰唆,直接给出自己python实现的完整版本,全部才60多行代码,简单易懂,并有简要注释,去雾效果也很不错. 在这个python版本中,计算量最大的就是最小值滤波,纯python写的,慢,可以进一步使用C优化,其他部分都是使用numpy和opencv的现成东东,效率还行. import cv2 import numpy as np def zmMinFilterGray(src, r=7): '''最小值滤波,r是滤波器半径''' ''
-
OpenCV+Python几何变换的实现示例
几何变换 图像的几何变换是指将一幅图像映射到另一幅图像内.有缩放.翻转.仿射变换.透视.重映射等操作. 1 缩放 使用cv2.resize()函数实现对图像的缩放,但要注意cv2.resize()函数内的dsize参数与原图像的行列属性是相反的,也就是:目标图像的行数是原始图像的列数,目标图像的列数是原始图像的行数. 下面举例说明cv2.resize()函数的用法: import cv2 img=cv2.imread('E:/python_opencv/tupian.jpg') rows,col
-
opencv python简易文档之图像处理算法
目录 将图片转为灰度图 HSV 图像阈值 图像平滑 形态学-腐蚀操作 形态学-膨胀操作 开运算与闭运算 梯度运算 礼帽与黑帽 图像梯度处理 Canny边缘检测 图像金字塔 图像轮廓 直方图 直方图均衡化: 自适应均衡化: 傅里叶变换 模板匹配 总结 上一篇已经给大家介绍了opencv python图片基本操作的相关内容,这里继续介绍图像处理算法,下面来一起看看吧 将图片转为灰度图 import cv2 #opencv读取的格式是BGR img=cv2.imread('cat.jpg') # 将图
-
opencv python简易文档之图片基本操作指南
前言 最近在学习opencv,使用的是python接口.于是想着写些相关的笔记供以后参考,有不足之处希望大家指出. 使用python学习opencv需要下载opencv第三方库. 使用pip安装即可. 安装命令: pip install opencv-python pip install opencv-contrib-python(opencv的贡献库) 引入opencv import cv2 读取图片: img=cv2.imread('cat.jpg') # cat.jpg路径为相对路径 #
随机推荐
- 用Mootools获得操作索引的两种方法分享
- 妙用Angularjs实现表格按指定列排序
- Lua中的迭代器和泛型for学习总结
- 比较IOS开发中常用视图的四种切换方式
- asp.net用url重写URLReWriter实现任意二级域名 新
- js基础之DOM中元素对象的属性方法详解
- php实现搜索类封装示例
- php中抓取网页内容的实例详解
- Android实现网络多线程文件下载
- 利用 cache 做对比静态页的网页技术
- css3元素简单的闪烁效果实现(html5 jquery)
- css滤镜实现页面灰色黑白色效果代码
- 详解node服务器中打开html文件的两种方法
- 百度空间的popup效果分析第1/3页
- javascript 基础简介 适合新手学习
- Linux系统下常见基本问题的解决方法
- 给ActiveX签名的实现方法详解
- DVD刻录机使用教程之硬件安装篇图文教程
- ecshop 2.72如何修改后台访问地址
- Android编程之ICS式下拉菜单PopupWindow实现方法详解(附源码下载)