python爬虫 Pyppeteer使用方法解析

引言

Selenium 在被使用的时候有个麻烦事,就是环境的相关配置,得安装好相关浏览器,比如 Chrome、Firefox 等等,然后还要到官方网站去下载对应的驱动,最重要的还需要安装对应的 Python Selenium 库,确实是不是很方便,另外如果要做大规模部署的话,环境配置的一些问题也是个头疼的事情。那么本节就介绍另一个类似的替代品,叫做 Pyppeteer。

Pyppeteer简介

注意,本节讲解的模块叫做 Pyppeteer,不是 Puppeteer。Puppeteer 是 Google 基于 Node.js 开发的一个工具,有了它我们可以通过 JavaScript 来控制 Chrome 浏览器的一些操作,当然也可以用作网络爬虫上,其 API 极其完善,功能非常强大。 而 Pyppeteer 又是什么呢?它实际上是 Puppeteer 的 Python 版本的实现,但他不是 Google 开发的,是一位来自于日本的工程师依据 Puppeteer 的一些功能开发出来的非官方版本。

在 Pyppetter 中,实际上它背后也是有一个类似 Chrome 浏览器的 Chromium 浏览器在执行一些动作进行网页渲染,首先说下 Chrome 浏览器和 Chromium 浏览器的渊源。

Chromium 是谷歌为了研发 Chrome 而启动的项目,是完全开源的。二者基于相同的源代码构建,Chrome 所有的新功能都会先在 Chromium 上实现,待验证稳定后才会移植,因此 Chromium 的版本更新频率更高,也会包含很多新的功能,但作为一款独立的浏览器,Chromium 的用户群体要小众得多。两款浏览器“同根同源”,它们有着同样的 Logo,但配色不同,Chrome 由蓝红绿黄四种颜色组成,而 Chromium 由不同深度的蓝色构成。

Pyppeteer 就是依赖于 Chromium 这个浏览器来运行的。那么有了 Pyppeteer 之后,我们就可以免去那些繁琐的环境配置等问题。如果第一次运行的时候,Chromium 浏览器没有安装,那么程序会帮我们自动安装和配置,就免去了繁琐的环境配置等工作。另外 Pyppeteer 是基于 Python 的新特性 async 实现的,所以它的一些执行也支持异步操作,效率相对于 Selenium 来说也提高了。

环境安装

由于 Pyppeteer 采用了 Python 的 async 机制,所以其运行要求的 Python 版本为 3.5 及以上

pip install pyppeteer

快速上手

- 爬取http://quotes.toscrape.com/js/ 全部页面数据

import asyncio
from pyppeteer import launch
from lxml import etree

async def main():
browser = await launch()
page = await browser.newPage()
await page.goto('http://quotes.toscrape.com/js/')
page_text = await page.content()
tree = etree.HTML(page_text)
div_list = tree.xpath('//div[@class="quote"]')
print(len(div_list))
await browser.close()

asyncio.get_event_loop().run_until_complete(main())

结合协程

from pyppeteer import launch
import asyncio
from lxml import etree

# 实例化浏览器对象(谷歌测试版)
async def main():
  bro = await launch()
  # 新建一个空白页
  page = bro.newPage()
  page.goto('http://quotes.toscrape.com/js/')

  # 获取page当前显示页面的源码数据
  page_text = await page.content()

  return page_text

def parse(task):
  page_text = task.result()
  tree = etree.HTML(page_text)
  div_list = tree.xpath('//div[@class="quote"]')
  for div in div_list:
    content = div.xpath('./span[1]/text()')
    print(content)

c = main()
task = asyncio.ensure_future(c)
task.add_done_callback(parse)
loop = asyncio.get_event_loop()
loop.run_until_complete(c)

解释:

launch 方法会新建一个 Browser 对象,然后赋值给 browser,然后调用 newPage 方法相当于浏览器中新建了一个选项卡,同时新建了一个 Page 对象。然后 Page 对象调用了 goto 方法就相当于在浏览器中输入了这个 URL,浏览器跳转到了对应的页面进行加载,加载完成之后再调用 content 方法,返回当前浏览器页面的源代码。

然后进一步地,我们用 pyquery 进行同样地解析,就可以得到 JavaScript 渲染的结果了。在这个过程中,我们没有配置 Chrome 浏览器,没有配置浏览器驱动,免去了一些繁琐的步骤,同样达到了 Selenium 的效果,还实现了异步抓取。

详细用法

  • 开启浏览器
  • 调用 launch 方法即可,相关参数介绍:
    • ignoreHTTPSErrors (bool): 是否要忽略 HTTPS 的错误,默认是 False。
    • headless (bool): 是否启用 Headless 模式,即无界面模式,如果 devtools 这个参数是 True 的话,那么该参数就会被设置为 False,否则为 True,即默认是开启无界面模式的。
    • executablePath (str): 可执行文件的路径,如果指定之后就不需要使用默认的 Chromium 了,可以指定为已有的 Chrome 或 Chromium。
    • args (List[str]): 在执行过程中可以传入的额外参数。
    • devtools (bool): 是否为每一个页面自动开启调试工具,默认是 False。如果这个参数设置为 True,那么 headless 参数就会无效,会被强制设置为 False。
  • 关闭提示条:”Chrome 正受到自动测试软件的控制”,这个提示条有点烦,那咋关闭呢?这时候就需要用到 args 参数了,禁用操作如下:
    • browser = await launch(headless=False, args=['--disable-infobars'])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 如何使用python爬虫爬取要登陆的网站

    你好 由于你是游客 无法查看本文 请你登录再进 谢谢合作..... 当你在爬某些网站的时候 需要你登录才可以获取数据 咋整? 莫慌 把这几招传授给你 让你以后从容应对 登录的常见方法无非是这两种 1.让你输入帐号和密码登录 2.让你输入帐号密码+验证码登录 今天 先跟你说说第一种 需要验证码的咱们下一篇再讲 第一招 Cookie大法 你平常在上某个不为人知的网站的时候 是不是发现你只要登录一次 就可以一直看到你想要的内容 过了一阵子才需要再次登录 这就是因为 Cookie 在做怪 简单来说 就是

  • Python代理IP爬虫的新手使用教程

    前言 Python爬虫要经历爬虫.爬虫被限制.爬虫反限制的过程.当然后续还要网页爬虫限制优化,爬虫再反限制的一系列道高一尺魔高一丈的过程.爬虫的初级阶段,添加headers和ip代理可以解决很多问题. 本人自己在爬取豆瓣读书的时候,就以为爬取次数过多,直接被封了IP.后来就研究了代理IP的问题. (当时不知道什么情况,差点心态就崩了...),下面给大家介绍一下我自己代理IP爬取数据的问题,请大家指出不足之处. 问题 这是我的IP被封了,一开始好好的,我还以为是我的代码问题了 思路: 从网上查找了

  • python网络爬虫 CrawlSpider使用详解

    CrawlSpider 作用:用于进行全站数据爬取 CrawlSpider就是Spider的一个子类 如何新建一个基于CrawlSpider的爬虫文件 scrapy genspider -t crawl xxx www.xxx.com 例:choutiPro LinkExtractor连接提取器:根据指定规则(正则)进行连接的提取 Rule规则解析器:将连接提取器提取到的连接进行请求发送,然后对获取的页面进行指定规则[callback]的解析 一个链接提取器对应唯一一个规则解析器 例:crawl

  • python爬虫自动创建文件夹的功能

    该爬虫应用了创建文件夹的功能: #file setting folder_path = "D:/spider_things/2016.4.6/" + file_name +"/" if not os.path.exists(folder_path): os.makedirs(folder_path) 上面代码块的意思是: "os.path.exists(folder_path)"用来判断folder_path这个路径是否存在,如果不存在,就执行&

  • python爬虫神器Pyppeteer入门及使用

    前言 提起selenium想必大家都不陌生,作为一款知名的Web自动化测试框架,selenium支持多款主流浏览器,提供了功能丰富的API接口,经常被我们用作爬虫工具来使用.但是selenium的缺点也很明显,比如速度太慢.对版本配置要求严苛,最麻烦是经常要更新对应的驱动. 今天就给大家介绍另一款web自动化测试工具Pyppeteer,虽然支持的浏览器比较单一,但在安装配置的便利性和运行效率方面都要远胜selenium. 01.Pyppeteer简介 介绍Pyppeteer之前先说一下Puppe

  • python并发爬虫实用工具tomorrow实用解析

    tomorrow是我最近在用的一个爬虫利器,该模块属于第三方的一个模块,使用起来非常的方便,只需要用其中的threads方法作为装饰器去修饰一个普通的函数,既可以达到并发的效果,本篇将用实例来展示tomorrow的强大之处.后面将对tomorrow的实现原理做进一步的分析. 1.安装第三方包 pip install requests_html #网络请求包 pip install fake-useragent #获取useragent包 pip install tomorrow 2.普通下载方式

  • Python爬虫 12306抢票开源代码过程详解

    今天就和大家一起来讨论一下python实现12306余票查询(pycharm+python3.7),一起来感受一下python爬虫的简单实践 我们说先在浏览器中打开开发者工具(F12),尝试一次余票的查询,通过开发者工具查看发出请求的包 可以看到红框框中的URL就是我们向12306服务器发出的请求,那么具体是什么呢?我们来看看 https://kyfw.12306.cn/otn/leftTicket/queryZ?leftTicketDTO.train_date=2019-01-21&leftT

  • python爬虫中多线程的使用详解

    queue介绍 queue是python的标准库,俗称队列.可以直接import引用,在python2.x中,模块名为Queue.python3直接queue即可 在python中,多个线程之间的数据是共享的,多个线程进行数据交换的时候,不能够保证数据的安全性和一致性,所以当多个线程需要进行数据交换的时候,队列就出现了,队列可以完美解决线程间的数据交换,保证线程间数据的安全性和一致性. #多线程实战栗子(糗百) #用一个队列Queue对象, #先产生所有url,put进队列: #开启多线程,把q

  • python爬虫 Pyppeteer使用方法解析

    引言 Selenium 在被使用的时候有个麻烦事,就是环境的相关配置,得安装好相关浏览器,比如 Chrome.Firefox 等等,然后还要到官方网站去下载对应的驱动,最重要的还需要安装对应的 Python Selenium 库,确实是不是很方便,另外如果要做大规模部署的话,环境配置的一些问题也是个头疼的事情.那么本节就介绍另一个类似的替代品,叫做 Pyppeteer. Pyppeteer简介 注意,本节讲解的模块叫做 Pyppeteer,不是 Puppeteer.Puppeteer 是 Goo

  • Python爬虫的两套解析方法和四种爬虫实现过程

    对于大多数朋友而言,爬虫绝对是学习 python 的最好的起手和入门方式.因为爬虫思维模式固定,编程模式也相对简单,一般在细节处理上积累一些经验都可以成功入门.本文想针对某一网页对  python 基础爬虫的两大解析库(  BeautifulSoup 和  lxml )和几种信息提取实现方法进行分析,以开  python 爬虫之初见. 基础爬虫的固定模式 笔者这里所谈的基础爬虫,指的是不需要处理像异步加载.验证码.代理等高阶爬虫技术的爬虫方法.一般而言,基础爬虫的两大请求库 urllib 和 

  • Python爬虫爬取、解析数据操作示例

    本文实例讲述了Python爬虫爬取.解析数据操作.分享给大家供大家参考,具体如下: 爬虫 当当网 http://search.dangdang.com/?key=python&act=input&page_index=1 获取书籍相关信息 面向对象思想 利用不同解析方式和存储方式 引用相关库 import requests import re import csv import pymysql from bs4 import BeautifulSoup from lxml import e

  • python爬虫教程之bs4解析和xpath解析详解

    目录 bs4解析 原理: 如何实例化BeautifulSoup对象: 用于数据解析的方法和属性: xpath解析 xpath解析原理: 实例化一个etree对象: xpath(‘xpath表达式’) 总结 bs4解析 原理: 1.实例化一个BeautifulSoup对象,并且将页面源码数据加载到该对象中 2.通过调用BeautifulSoup对象中相关的属性或者方法进行标签定位和数据提取 如何实例化BeautifulSoup对象: from bs4 import BeautifulSoup Be

  • python zip()函数使用方法解析

    这篇文章主要介绍了python zip()函数使用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 参数iterable为可迭代的对象,并且可以有多个参数.该函数返回一个以元组为元素的列表,其中第 i 个元组包含每个参数序列的第 i 个元素.返回的列表长度被截断为最短的参数序列的长度.只有一个序列参数时,它返回一个1元组的列表.没有参数时,它返回一个空的列表. 当没有参数的时候 import numpy as np zz=zip() pr

  • python set集合使用方法解析

    这篇文章主要介绍了python set集合使用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 定义 定义:在{}中用逗号隔开,集合具备以下3个特点: 1.每个元素必须是不可变类型 2.集合内没有重复元素 3.集合内元素无序 my_set = {1, 2, 3, 4} # 本质上 my_set = set({1, 2, 3, 4}) # 注意1:列表是索引对应值,字典是key对应值,均可以取得单个值. # 而集合类型既没有索引也没有key

  • Python with标签使用方法解析

    这篇文章主要介绍了Python with标签使用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.在python DTL模板中,想要定义变量,可以通过"with"语句来实现. 2."with"语句有两种使用方式: 第一种是"with xx=xx"的形式,注意,使用这种形式进行定义变量的话,=号两边不能有空格,否则的话,DTL模板就会识别不了. 第二种是"with xxx as

  • Python Selenium参数配置方法解析

    这篇文章主要介绍了Python Selenium参数配置方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 selenium.获取浏览器大小.设置浏览器位置.最大化浏览器 get_window_size() 获取浏览器大小 # 将窗口大小实例化 size_Dict = driver.get_window_size() # 打印浏览器的宽和高 print("当前浏览器的宽:", size_Dict['width']) print(&

  • python默认参数调用方法解析

    这篇文章主要介绍了python默认参数调用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 最常见的一种形式是的是为一个或者多个参数指定默认值,这会创建一个可以使用比定义时允许的参数更少的参数调用的函数, def ask_ok(prompt, retries=4, reminder='Please try again!'): while True: ok = input(prompt) if ok in ('y', 'ye', 'yes'

  • Python argparse模块使用方法解析

    这篇文章主要介绍了Python argparse模块使用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1. 说明 argparse 模块是python 用于解析命令行参数和选项的标准模块. 程序定义它需要的参数,然后 argparse 模块将弄清如何从 sys.argv 解析出那些参数. argparse 模块还会自动生成帮助和使用手册,并在用户给程序传入无效参数时报出错误信息. 2. 使用流程 使用argparse 模块配置命令行参

随机推荐