python处理excel绘制雷达图

本文实例为大家分享了python处理excel绘制雷达图的具体代码,供大家参考,具体内容如下

python处理excel制成雷达图,利用工具plotly在线生成,事先要安装好xlrd组件

代码:

import xlrd //事先要下载好xlrd组件
import plotly.plotly as py
import plotly.graph_objs as go
from plotly import tools
from plotly.graph_objs import *
tools.set_credentials_file(username='  ', api_key='  ')

fname="**********.xlsx"
df=xlrd.open_workbook(fname)
sh=df.sheet_by_name("Sheet1")
nrows=sh.nrows
ncols=sh.ncols
row_list=[]
for i in range(0,nrows):
 row_data=sh.row_values(i)
 row_list.append(row_data)
col_list=[]
for i in range(0,ncols):
 col_data=sh.col_values(i)
 col_list.append(col_data)

data = [          //数据根据自己的实际情况来
 go.Scatterpolar(
  r = [col_list[1][2],col_list[1][3], col_list[1][4], col_list[1][5], col_list[1][6], col_list[1][7],
  col_list[1][8], col_list[1][9], col_list[1][10], col_list[1][11], col_list[1][12],
  col_list[1][13], col_list[1][14], col_list[1][15], col_list[1][16], col_list[1][17],
  col_list[1][18], col_list[1][19], col_list[1][20], col_list[1][21], col_list[1][22],
  col_list[1][23], col_list[1][24], col_list[1][25], col_list[1][26], col_list[1][27],
  col_list[1][28], col_list[1][29], col_list[1][30], col_list[1][31], col_list[1][32],

  col_list[1][33], col_list[1][34], col_list[1][35], col_list[1][36], col_list[1][37],col_list[1][38]],
  theta = [0,10,20, 30, 40, 50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230,240,250,260,270,280,290,300,310,320,330,340,350,0],
  fill = 'toself',
  name = 'TX'
 ),
 go.Scatterpolar(
  r = [col_list[4][2],col_list[4][3], col_list[4][4], col_list[4][5], col_list[4][6], col_list[4][7],
  col_list[4][8], col_list[4][9], col_list[4][10], col_list[4][11], col_list[4][12],
  col_list[4][13], col_list[4][14], col_list[4][15], col_list[4][16], col_list[4][17],
  col_list[4][18], col_list[4][19], col_list[4][20], col_list[4][21], col_list[4][22],
  col_list[4][23], col_list[4][24], col_list[4][25], col_list[4][26], col_list[4][27],
  col_list[4][28], col_list[4][29], col_list[4][30], col_list[4][31], col_list[4][32],
  col_list[4][33], col_list[4][34], col_list[4][35], col_list[4][36], col_list[4][37],col_list[4][38]],
  theta = ['0',10,20, 30, 40, 50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230,240,250,260,270,280,290,300,310,320,330,340,350,0],
  fill = 'toself',
  name = 'RX'
 )
]

layout = go.Layout(
 polar = dict(
 radialaxis = dict(
  visible = True,
  range = [0, 110]
 )
 ),
 showlegend = False
)

fig = go.Figure(data=data, layout=layout)
py.plot(fig, filename = "radar")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python Opencv任意形状目标检测并绘制框图

    opencv 进行任意形状目标识别,供大家参考,具体内容如下 工作中有一次需要在简单的图上进行目标识别,目标的形状不固定,并且存在一定程度上的噪声影响,但是噪声影响不确定.这是一个简单的事情,因为图像并不复杂,现在将代码公布如下: import cv2 def otsu_seg(img): ret_th, bin_img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) return ret_th, bin_img d

  • python plotly绘制直方图实例详解

    计算数值出现的次数 import cufflinks as cf cf.go_offline() import numpy as np import pandas as pd set_slippage_avg_cost = [22.01, 20.98, 17.11, 9.06, 9.4, 3.65, 19.65, 7.01, 11.21, 10.3, 5.1, 23.98, 12.03, 8.13, 8.07, 9.28, 3.93, 4.23, 18.6, 8.22, 7.85, 5.39,

  • Python箱型图绘制与特征值获取过程解析

    这篇文章主要介绍了Python箱型图绘制与特征值获取过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较 如何利用Python绘制箱型图 需要的import的包 import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties import numpy as np import

  • python图形绘制奥运五环实例讲解

    1. 适当的空格 逻辑行首的空白表示逻辑表示层次关系 从而决定分组 语句从新行的第一列开始 风格统一 都用四个空格 不能随便加空格 奥运五环 #绘制奥运五环 import turtle turtle.width(10) turtle.color("blue") turtle.circle(50) turtle.penup() turtle.goto(120,0) turtle.pendown() turtle.color("black") turtle.circle

  • python dataframe常见操作方法:实现取行、列、切片、统计特征值

    实例如下所示: # -*- coding: utf-8 -*- import numpy as np import pandas as pd from pandas import * from numpy import * data = DataFrame(np.arange(16).reshape(4,4),index = list("ABCD"),columns=list('wxyz')) print data print data[0:2] #取前两行数据 print'+++++

  • Python绘制热力图示例

    本文实例讲述了Python绘制热力图操作.分享给大家供大家参考,具体如下: 示例一: # -*- coding: utf-8 -*- from pyheatmap.heatmap import HeatMap import numpy as np N = 10000 X = np.random.rand(N) * 255 # [0, 255] Y = np.random.rand(N) * 255 data = [] for i in range(N): tmp = [int(X[i]), in

  • 详解用Python为直方图绘制拟合曲线的两种方法

    直方图是用于展示数据的分组分布状态的一种图形,用矩形的宽度和高度表示频数分布,通过直方图,用户可以很直观的看出数据分布的形状.中心位置以及数据的离散程度等. 在python中一般采用matplotlib库的hist来绘制直方图,至于如何给直方图添加拟合曲线(密度函数曲线),一般来说有以下两种方法. 方法一:采用matplotlib中的mlab模块 mlab模块是Python中强大的3D作图工具,立体感效果极佳.在这里使用mlab可以跳出直方图二维平面图形的限制,在此基础上再添加一条曲线.在这里,

  • 使用python绘制温度变化雷达图

    本文实例为大家分享了python绘制温度变化雷达图的具体代码,供大家参考,具体内容如下 假设某天某地每三个小时取样的气温为 针对温度变化趋势绘制雷达图: 代码如下: import numpy as np import matplotlib.pyplot as plt #标签 labels = np.array(['3℃','5℃','6℃','3℃','1℃','3℃','3℃','2℃']) #数据个数 dataLenth = 8 #数据 data = np.array([3,5,6,3,1,

  • python处理excel绘制雷达图

    本文实例为大家分享了python处理excel绘制雷达图的具体代码,供大家参考,具体内容如下 python处理excel制成雷达图,利用工具plotly在线生成,事先要安装好xlrd组件 代码: import xlrd //事先要下载好xlrd组件 import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.graph_objs import * tools.set_

  • Python中pygal绘制雷达图代码分享

    pygal的安装和简介,大家可以参阅<pip和pygal的安装实例教程>,下面看看通过pygal实现绘制雷达图代码示例. 雷达图(Radar): import pygal radar_chart = pygal.Radar() radar_chart.title = 'V8 benchmark results' radar_chart.x_labels = ['Richards', 'DeltaBlue', 'Crypto', 'RayTrace', 'EarleyBoyer', 'RegEx

  • python使用matplotlib绘制雷达图

    本文实例为大家分享了python使用matplotlib绘制雷达图的具体代码,供大家参考,具体内容如下 示例代码: # encoding: utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['KaiTi'] # 显示中文 labels = np.array([u'总场次', u'吃鸡数', u'前十数',u'总击杀']) #

  • PYTHON绘制雷达图代码实例

    这篇文章主要介绍了PYTHON绘制雷达图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.雷达图 import matplotlib.pyplot as plt import numpy as np values = [0.09,-0.05,0.20,-0.02,0.08,0.09,0.03,0.027] x = np.linspace(0,2*np.pi,9)[:-1] c = np.random.random(size=(8,3)

  • 如何利用Python matplotlib绘制雷达图

    本篇文章介绍使用matplotlib绘制雷达图. 雷达图也被称为网络图,蜘蛛图,星图,蜘蛛网图,是一个不规则的多边形.雷达图可以形象地展示相同事物的多维指标,雷达图几乎随处可见,应用场景非常多. 一.matplotlib绘制圆形雷达图 # coding=utf-8 import numpy as np import matplotlib.pyplot as plt results = [{"大学英语": 87, "高等数学": 79, "体育":

  • python绘制雷达图实例讲解

    在python中,有很多用于生成基于JS的百度开源的数据可视化图表 Echarts 的类库.设置的图样都非常漂亮,小编之前研究过很多图示,用python去抓取数据,然后进行画图,经历这么多得图样,最深有感触的还是关于绘制雷达图,大家应该都遇到过需要用到雷达图的时候吧,那就一起来了解下吧. 安装模块: pip install pyecharts 导入模块: from pyecharts import options as opts 准备数据: 大家可以自行导入数据使用. 绘制雷达图: randar

  • Python绘制雷达图时遇到的坑的解决

    ValueError: The number of FixedLocator locations (9), usually from a call to set_ticks, does not match the number of ticklabels (8). 运行书中例题时发现了这个错误, 原代码如上: import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font

  • 如何用python绘制雷达图

    目录 一.比较汽车性能 二.比较不同城市近期天气状况 雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法,雷达图通常用于综合分析多个指标,具有完整,清晰和直观的优点. 下面以实际例子给大家讲解一下雷达图的应用场景和绘制方法: 一.比较汽车性能 这类雷达图一般用于比较同类事物不同纬度性能的优劣,以奥迪A4L时尚动感型和凯迪拉克CT4精英型为例,我们来画一下这两种汽车的雷达图,代码如下: import pyecharts.options as opts f

  • Python可视化神器pyecharts绘制雷达图

    目录 雷达图 雷达图模板系列 基础雷达图 单例雷达图 空气质量模板 颜色雷达图 雷达图 雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法.轴的相对位置和角度通常是无信息的. 雷达图也称为网络图,蜘蛛图,星图,蜘蛛网图,不规则多边形,极坐标图或Kiviat图.它相当于​ ​平行坐标图​​,轴径向排列. 平行坐标图: 平行坐标图是一种通常的可视化方法, 用于对 高维几何 和 多元数据 的可视化. 为了表示在高维空间的一个点集,在N条平行的线的背景下,(一

  • Python利用matplotlib绘制圆环图(环形图)的实战案例

    目录 一.概念介绍 二.数据展示 三.图像绘制 四.参数解释 (1) wedgeprops是我们绘图时的参数字典. (2) startangle是第一个数据起画点. (3) plt.text (4) 可以绘制如示例图一样的colorbar,或者legend吗? 总结 一.概念介绍 圆环图(Donut Chart),又称为环形图,甜甜圈图.它从饼图变形而来,单环的作用上与饼图相似,用于展示定性数据中小类占大类的比例关系. Q: 那既然都有饼图了,为什么还要圆环图呢? ① 从空间利用效果上,饼图的t

随机推荐