Pandas的read_csv函数参数分析详解

函数原型

代码如下:

pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)

必填参数

filepath_or_buffer : str,pathlib。str, pathlib.Path,
py._path.local.LocalPath or any object with a read() method
(such as a file handle or StringIO)

读取文件路径,可以是URL,可用URL类型包括:http, ftp, s3和文件。

常用参数

sep :str, default ‘,'
指定分隔符。如果不指定参数,则会尝试使用逗号分隔。csv文件一般为逗号分隔符。

delimiter : str, default None
定界符,备选分隔符(如果指定该参数,则sep参数失效)

delim_whitespace :boolean, default False.
指定空格(例如' ‘或者' ‘)是否作为分隔符使用,等效于设定sep='\s+'。
如果这个参数设定为Ture那么delimiter 参数失效。

header :int or list of ints, default ‘infer'
指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。对于数据读取有表头和没表头的情况很实用

header :int or list of ints, default ‘infer'
指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。

names :  array-like, default None
用于结果的列名列表,对各列重命名,即添加表头。
如数据有表头,但想用新的表头,可以设置header=0,names=['a','b']实现表头定制。

index_col : int or sequence or False, default None
用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。
可使用index_col=[0,1]来指定文件中的第1和2列为索引列。

usecols : array-like, default None
返回一个数据子集,即选取某几列,不读取整个文件的内容,有助于加快速度和降低内存。
usecols=[1,2]或usercols=['a','b']

squeeze : boolean, default False
如果文件只包含一列,则返回一个Series

prefix :  str, default None
在没有列标题时,给列添加前缀。例如:添加‘X' 成为 X0, X1, ...

mangle_dupe_cols : boolean, default True
重复的列,将‘X'...'X'表示为‘X.0'...'X.N'。如果设定为False则会将所有重名列覆盖。

不太常用参数

dtype : Type name or dict of column -> type, default None
每列数据的数据类型。例如 {‘a': np.float64, ‘b': np.int32}

engine :  {‘c', ‘python'}, optional
使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。

converters : dict, default None
列转换函数的字典。key可以是列名或者列的序号。

true_values和false_values :  list, default None
Values to consider as True or False

skipinitialspace :boolean, default False
忽略分隔符后的空白(默认为False,即不忽略)

skiprows : list-like or integer, default None
需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。

skipfooter : int, default 0
从文件尾部开始忽略。 (c引擎不支持)

nrows : int, default None
需要读取的行数(从文件头开始算起)。

na_values : scalar, str, list-like, or dict, default None
一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。
默认为‘1.#IND', ‘1.#QNAN', ‘N/A', ‘NA', ‘NULL', ‘NaN', ‘nan'`.

keep_default_na :  bool, default True
如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加。

na_filter : boolean, default True
是否检查丢失值(空字符串或者是空值)。
对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。

verbose :boolean, default False
是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。

skip_blank_lines :boolean, default True
如果为True,则跳过空行;否则记为NaN。

encoding : str, default None
指定字符集类型,通常指定为'utf-8'. List of Python standard encodings

dialect : str or csv.Dialect instance, default None
如果没有指定特定的语言,如果sep大于一个字符则忽略。具体查看csv.Dialect 文档

tupleize_cols : boolean, default False
Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True
如果一行包含太多的列,那么默认不会返回DataFrame ,如果设置成false,那么会将改行剔除(只能在C解析器下使用)。

warn_bad_lines : boolean, default True
如果error_bad_lines =False,并且warn_bad_lines =True 那么所有的“bad lines”将会被输出(只能在C解析器下使用)。

low_memory : boolean, default True
分块加载到内存,在低内存消耗中解析。但是可能出现类型混淆。
确保类型不被混淆需要设置为False。或者使用dtype 参数指定类型。
注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,
而忽略类型(只能在C解析器中有效)

日期类型相关参数

parse_dates : boolean or list of ints or names or list of lists or dict, default False

boolean. True -> 解析索引
list of ints or names. e.g. If [1, 2, 3] -> 解析1,2,3列的值作为独立的日期列;
list of lists. e.g. If [[1, 3]] -> 合并1,3列作为一个日期列使用
dict, e.g. {‘foo' : [1, 3]} -> 将1,3列合并,并给合并后的列起名为"foo"

示例:df=pd.read_csv(file_path,parse_dates=['time1','time2']),
把time1和time2两列解析为日期格式。
这里不得不说,很遗憾中文不行,比如‘4月5日'这种格式就不能解析。

infer_datetime_format :boolean, default False
如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型,如果可以转换,转换方法并解析。
在某些情况下会快5~10倍。

keep_date_col : boolean, default False
如果连接多列解析日期,则保持参与连接的列。默认为False。

date_parser :  function, default None
于解析日期的函数,默认使用dateutil.parser.parser来做转换。
Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。
1.使用一个或者多个arrays(由parse_dates指定)作为参数;
2.连接指定多列字符串作为一个列作为参数;
3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数。

dayfirst : boolean, default False
DD/MM格式的日期类型

大文件常用参数

iterator : boolean, default False
返回一个TextFileReader 对象,以便逐块处理文件。

chunksize : int, default None
文件块的大小, See IO Tools docs for more informationon iterator and chunksize.

chunksize : int, default None
文件块的大小, See IO Tools docs for more informationon iterator and chunksize.

chunksize : int, default None
文件块的大小, See IO Tools docs for more informationon iterator and chunksize.

decimal : str, default ‘.'
字符中的小数点 (例如:欧洲数据使用',‘).

float_precision : string, default None
Specifies which converter the C engine should use for floating-point values.
The options are None for the ordinary converter, high for the high-precision converter,
and round_trip for the round-trip converter.

lineterminator : str (length 1), default None
行分割符,只在C解析器下使用。

quotechar : str (length 1), optional
引号,用作标识开始和解释的字符,引号内的分割符将被忽略。

quoting : int or csv.QUOTE_* instance, default 0
控制csv中的引号常量。
可选 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)

doublequote : boolean, default True
双引号,当单引号已经被定义,并且quoting 参数不是QUOTE_NONE的时候,
使用双引号表示引号内的元素作为一个元素使用。

escapechar : str (length 1), default None
当quoting 为QUOTE_NONE时,指定一个字符使的不受分隔符限值。

comment : str, default None
标识着多余的行不被解析。如果该字符出现在行首,这一行将被全部忽略。
这个参数只能是一个字符,空行(就像skip_blank_lines=True)注释行被header和skiprows忽略一样。
例如如果指定comment='#' 解析‘#empty\na,b,c\n1,2,3' 以header=0 那么返回结果将是以'a,b,c'作为header。

读取多个文件

#读取多个文件
import pandas
import glob
for r in glob.glob("test*.csv"):
    csv=pandas.read_csv(r)
    csv.to_csv("test.txt",mode="a+")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • pandas.read_csv参数详解(小结)

    pandas.read_csv参数整理 读取CSV(逗号分割)文件到DataFrame 也支持文件的部分导入和选择迭代 更多帮助参见:http://pandas.pydata.org/pandas-docs/stable/io.html 参数: filepath_or_buffer : str,pathlib.str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file

  • 快速解决pandas.read_csv()乱码的问题

    pandas.read_csv()遇到读进来乱码问题 1.设置encoding='gbk'或者encoding='utf-8'.pandas.read_csv('data.csv',encoding='gbk') 2.如果设置encoding直接报错的话 解决方法是:用记事本打开csv文件,另存为设置编码为utf-8,然后重新读取文件设置encoding='utf-8'就好了. 以上这篇快速解决pandas.read_csv()乱码的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希

  • 解决pandas read_csv 读取中文列标题文件报错的问题

    从windows操作系统本地读取csv文件报错 data = pd.read_csv(path) Traceback (most recent call last): File "C:/Users/arron/PycharmProjects/ML/ML/test.py", line 45, in <module> data = pd.read_csv(path) File "C:\Users\arron\AppData\Local\Continuum\Anacon

  • 解决pandas使用read_csv()读取文件遇到的问题

    如下: 数据文件: 上海机场 (sh600009) 24.11 3.58 东风汽车 (sh600006) 74.25 1.74 中国国贸 (sh600007) 26.38 2.66 包钢股份 (sh600010) 61.01 2.35 武钢股份 (sh600005) 75.85 1.3 浦发银行 (sh600000) 6.65 0.96 在使用read_csv() API读取CSV文件时求取某一列数据比较大小时, df=pd.read_csv(output_file,encoding='gb23

  • 使用pandas read_table读取csv文件的方法

    read_csv是pandas中专门用于csv文件读取的功能,不过这并不是唯一的处理方式.pandas中还有读取表格的通用函数read_table. 接下来使用read_table功能作一下csv文件的读取尝试,使用此功能的时候需要指定文件中的内容分隔符. 查看csv文件的内容如下: In [10]: cat data.csv index,name,comment,,,, 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,come

  • Pandas的read_csv函数参数分析详解

    函数原型 复制代码 代码如下: pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_va

  • 对pandas中apply函数的用法详解

    最近在使用apply函数,总结一下用法. apply函数可以对DataFrame对象进行操作,既可以作用于一行或者一列的元素,也可以作用于单个元素. 例:列元素 行元素 列 行 以上这篇对pandas中apply函数的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: 浅谈Pandas中map, applymap and apply的区别

  • Python函数参数操作详解

    本文实例讲述了Python函数参数操作.分享给大家供大家参考,具体如下: 简述 在 Python 中,函数的定义非常简单,满足对应的语法格式要求即可.对于调用者来说,只需关注如何传递正确的参数,以及获取相应的返回值就足够了,无需了解函数的内部实现(除非想学习.跟踪源码). 话虽如此,但对于函数的定义来说,灵活性非常高.除了常规定义的必选参数以外,还支持默认参数.可变参数.以及关键字参数.这样以来,不但能处理复杂的参数,还可以简化调用者的代码. 形参和实参 不止 Python,几乎所有的编程语言都

  • python3中datetime库,time库以及pandas中的时间函数区别与详解

    1介绍datetime库之前 我们先比较下time库和datetime库的区别 先说下time 在 Python 文档里,time是归类在Generic Operating System Services中,换句话说, 它提供的功能是更加接近于操作系统层面的.通读文档可知,time 模块是围绕着 Unix Timestamp 进行的. 该模块主要包括一个类 struct_time,另外其他几个函数及相关常量. 需要注意的是在该模块中的大多数函数是调用了所在平台C library的同名函数, 所以

  • 非常实用的MySQL函数全面总结详解示例分析教程

    目录 1.MySQL中关于函数的说明 2.单行函数分类 3.字符函数 4.数学函数 5.日期时间函数 6.其它常用系统函数 7.流程控制函数 8.聚合函数 1)聚合函数的功能和分类: 2)聚合函数的简单使用 3)五个聚合函数中传入的参数,所支持的数据类型有哪些? 4)聚合函数和group by的使用"最重要": 1.MySQL中关于函数的说明 "概念":类似java.python中的方法,将一组逻辑语句封装在方法体中,对外暴露方法名: "好处":

  • python Pandas库read_excel()参数实例详解

    目录 1.read_excel函数原型 2.参数使用举例 2.1. io和sheet_name参数 2.2. header参数 2.3. skipfooter参数 2.5. parse_dates参数 2.6. converters参数 2.7. na_values参数 2.8. usecols参数 总结 Pandas read_excel()参数使用详解 1.read_excel函数原型 def read_excel(io, sheet_name=0, header=0, names=None

  • Pandas数据分析之groupby函数用法实例详解

    目录 正文 一.了解groupby 二.数据文件简介 三.求各个商品购买量 四.求各个商品转化率 五.转化率最高的30个商品及其转化率 小小の总结 正文 今天本人在赶学校课程作业的时候突然发现groupby这个分组函数还是蛮有用的,有了这个分组之后你可以实现很多统计目标. 当然,最主要的是,他的使用非常简单 本期我们以上期作业为例,单走一篇文章来看看这个函数可以实现哪些功能: (本期需要准备的行囊): jupyter notebook环境(anaconda自带) pandas第三方库 numpy

  • C++中可以接受任意多个参数的函数定义方法(详解)

    能够接受任意多个参数的函数,可以利用重载来实现.这种函数的执行过程类似于递归调用,所以必须要有递归终止条件. #include <iostream> #include <bitset> void print() {} // 递归终止条件.这是必需的. template<typename Type, typename... Types> void print(const Type& arg, const Types&... args) { std::cou

  • python3中sorted函数里cmp参数改变详解

    今天在刷leetcode的时候,对于179题返回最大数,用python2中的sorted(cmp)会很方便,但是在python3中这一参数被取消了,经过查找,发现应该借助functools中的cmp_to_key函数,直接贴代码 import functools def cmp(a,b): if a > b : return -1 elif a < b : return 1 else: return 0 nums = [1,2,3,4,5,6] sorted_nums = sorted(num

  • python open函数中newline参数实例详解

    目录 问题的由来 具体实例 总结 问题的由来 我在读pythoncsv模块文档 看到了这样一句话 如果 csvfile 是文件对象,则打开它时应使用 newline=‘’.其备注:如果没有指定 newline=‘’,则嵌入引号中的换行符将无法正确解析,并且在写入时,使用 \r\n 换行的平台会有多余的 \r 写入.由于 csv 模块会执行自己的(通用)换行符处理,因此指定 newline=‘’ 应该总是安全的. 我就在思考open函数中的newline参数的作用,因为自己之前在使用open函数时

随机推荐