numpy中np.nditer、flags=[''multi_index''] 的用法说明

在看CS231n的时候,有这么一行代码

it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])

查了查np.nditer原来是numpy array自带的迭代器。这里简单写个demo解释一下np.nditer的用法。

先构建一个3x4的矩阵

然后输入命令

flags=['multi_index']表示对a进行多重索引,具体解释看下面的代码。

op_flags=['readwrite']表示不仅可以对a进行read(读取),还可以write(写入),即相当于在创建这个迭代器的时候,我们就规定好了有哪些权限。

迭代一下试一试

print it.multi_index表示输出元素的索引,可以看到输出的结果都是index。

it.iternext()表示进入下一次迭代,如果不加这一句的话,输出的结果就一直都是(0, 0)。

补充:it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])

在看cs221n代码的时候碰到一行代码。

it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])

np.nditer()函数解析

class np.nditer()

参数:

op : ndarray或array_like的序列。迭代的数组。

flags : str的序列,可选。用于控制迭代器行为的标志。

“buffered”可在需要时启用缓冲。

“c_index”导致跟踪C顺序索引。

“f_index”导致跟踪Fortran-order索引。

“multi_index”导致跟踪多个索引或每个迭代维度一个索引元组。

“common_dtype”会将所有操作数转换为公共数据类型,并根据需要进行复制或缓冲。

“copy_if_overlap”使迭代器确定读操作数是否与写操作数重叠,并根据需要进行临时复制以避免重叠。在某些情况下,可能会出现误报(不必要的复制)。

“delay_bufalloc”延迟缓冲区的分配,直到进行reset()调用。允许“allocate”操作数在其值复制到缓冲区之前进行初始化。

“external_loop”导致给定的值是具有多个值的一维数组,而不是零维数组。

当同时使用“buffered”和“external”循环时,“grow-inner”允许值数组大小大于缓冲区大小。

“ranged”允许将迭代器限制为iterindex值的子范围。

“refs_ok”允许迭代引用类型,例如对象数组。

“reduce_ok”允许迭代广播的“readwrite”操作数,也称为缩减操作数。

“zerosize_ok”允许itersize为零。

op_flags : str列表,可选。这是每个操作数的标志列表。至少,必须指定“readonly”,“readwrite”或“writeonly”中的一个。

“readonly”表示只读取操作数。

“readwrite”表示将读取和写入操作数。

“writeonly”表示只会写入操作数。

“no_broadcast”阻止操作数被广播。

“contig”强制操作数数据是连续的。

“aligned”强制操作数数据对齐。

“nbo”强制操作数数据以本机字节顺序排列。

如果需要,“copy”允许临时只读副本。

“updateifcopy”允许在需要时使用临时读写副本。

如果在op参数中为None,则“allocate”会导致分配数组。

“no_subtype”阻止“allocate”操作数使用子类型。

“arraymask”表示此操作数是在写入设置了“writemasked”标志的操作数时用于选择元素的掩码。迭代器不强制执行此操作,但是当从缓冲区写回数组时,它只复制由此掩码指示的元素。

'writemasked'表示只写入所选'arraymask'操作数为True的元素。

“overlap_assume_elementwise”可用于标记仅在迭代器顺序中访问的操作数,以便在存在“copy_if_overlap”时允许不太保守的复制。

op_dtypes : dtype的dtype 或tuple,可选。操作数所需的数据类型。如果启用了复制或缓冲,则数据将转换为原始类型或从其原始类型转换。

order: {‘C',‘F',‘A',‘K'},可选

控制迭代顺序。'C'表示C顺序,'F'表示Fortran顺序,'A'表示'F'顺序,如果所有数组都是Fortran连续,否则'C'顺序,‘K'表示接近数组元素出现的顺序在内存中尽可能。这也会影响“allocate”操作数的元素内存顺序,因为它们被分配为与迭代顺序兼容。默认为'K'。

casting :{‘no', ‘equiv', ‘safe', ‘same_kind', ‘unsafe'},可选。控制进行复制或缓冲时可能出现的数据转换类型。建议不要将此设置为“unsafe”,因为它会对累积产生不利影响。

“no”表示完全不应强制转换数据类型。

“equiv”表示只允许更改字节顺序。

“safe”表示只允许保留值的强制转换。

“same_kind”意味着只允许安全的类型或类型内的类型,如float64到float32。

“unsafe”表示可以进行任何数据转换。

op_axes : 整数列表列表,可选。如果提供,则是每个操作数的int或None列表。操作数的轴列表是从迭代器的维度到操作数的维度的映射。可以为条目放置值-1,从而将该维度视为“newaxis”。

itershape : 整数元组,可选。迭代器的理想形状。这允许“allocate”具有由op_axes映射的维度的操作数不对应于不同操作数的维度,以获得该维度不等于1的值。

buffersize : int,可选。启用缓冲时,控制临时缓冲区的大小。设置为0表示默认值。

例子1:

默认情况下,nditer将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定op_flags=['readwrite']模式:

基本迭代参数flag=['f_index'/'mulit_index'],可输出自身坐标it.index/it.multi_index。

“multi_index”表示对x进行表示对x进行多重索引。

print("%d <%s>" % (it[0], it.multi_index))表示输出元素的索引,可以看到输出的结果都是index。

下面分别举例子说明:

import numpy as np
x = np.arange(6).reshape(2,3)
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
 print("%d <%s>" % (it[0], it.multi_index))
 it.iternext()
# 0 <(0, 0)>
# 1 <(0, 1)>
# 2 <(0, 2)>
# 3 <(1, 0)>
# 4 <(1, 1)>
# 5 <(1, 2)>

it.iternext()表示进入下一次迭代,如果不加这一句的话,输出的结果就一直都是0 <(0, 0)>且不间断地输出。

0 <(0, 0)>
0 <(0, 0)>
0 <(0, 0)>
0 <(0, 0)>
0 <(0, 0)>
0 <(0, 0)>
......
......

例子2:

import numpy as np
x = np.arange(6).reshape(2,3)
# 单维迭代
it = np.nditer(x, flags=['f_index'])
while not it.finished:
    print("%d <%s>" % (it[0], it.index))
    it.iternext()
# 0 <0>
# 1 <2>
# 2 <4>
# 3 <1>
# 4 <3>
# 5 <5>
import numpy as np
x = np.arange(6).reshape(2,3)
# 多维迭代
it = np.nditer(x, flags=['multi_index'])
while not it.finished:
    print("%d <%s>" % (it[0], it.multi_index))
    it.iternext()
# 0 <(0, 0)>
# 1 <(0, 1)>
# 2 <(0, 2)>
# 3 <(1, 0)>
# 4 <(1, 1)>
# 5 <(1, 2)>

例子3:

import numpy as np
x = np.arange(6).reshape(2,3)
# 列顺序迭代
it = np.nditer(x, flags=['f_index'], order='F')
while not it.finished:
    print("%d <%s>" % (it[0], it.index), end=' | ')
    it.iternext()

# 0 <0> | 3 <1> | 1 <2> | 4 <3> | 2 <4> | 5 <5> |
import numpy as np
x = np.arange(6).reshape(2,3)
# 行顺序迭代
it = np.nditer(x, flags=['f_index'], order='C')
while not it.finished:
    print("%d <%s>" % (it[0], it.index), end=' | ')
    it.iternext()

# 0 <0> | 1 <2> | 2 <4> | 3 <1> | 4 <3> | 5 <5> |

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • numpy数据类型dtype转换实现

    这篇文章我们玩玩numpy的数值数据类型转换 导入numpy >>> import numpy as np 一.随便玩玩 生成一个浮点数组 >>> a = np.random.random(4) 看看信息 >>> a array([ 0.0945377 , 0.52199916, 0.62490646, 0.21260126]) >>> a.dtype dtype('float64') >>> a.shape (4,

  • Python利用numpy实现三层神经网络的示例代码

    本文主要介绍了Python利用numpy实现三层神经网络的示例代码,分享给大家,具体如下: 其实神经网络很好实现,稍微有点基础的基本都可以实现出来.主要都是利用上面这个公式来做的. 这是神经网络的整体框架,一共是三层,分为输入层,隐藏层,输出层.现在我们先来讲解下从输出层到到第一个隐藏层. 使用的编译器是jupyter notebook import numpy as np #定义X,W1,B1 X = np.array([1.0, 0.5]) w1 = np.array([[0.1, 0.3,

  • numpy 实现返回指定行的指定元素的位置索引

    先上代码,主要语句为np.where(b[c]==1), 详细解释如下: import numpy as np b = np.array([[-2,-3,0,0,0,6,4,1],[88,1,0,0,0,6,4,2],[99,6,0,0,1,6,4,2]]) # 三行八列的数组b print('b\n',b) c = np.array([2,0]) # c表示指定行 print('b[c]\n',b[c]) # b[c]返回 数组b的指定行 这里依次返回了b的下标为2和0的行 print('\n

  • Python基础之numpy库的使用

    numpy库概述 numpy库处理的最基础数据类型是由同种元素构成的多维数组,简称为"数组" 数组的特点: 数组中所有元素的类型必须相同 数组中元素可以用整数索引 序号从0开始 ndarray类型的维度叫做轴,轴的个数叫做秩 numpy库的解析 由于numpy库中函数较多而且容易与常用命名混淆,建议采用如下方法引用numpy库 import numpy as np numpy库中常用的创建数组函数 函数 描述 np.array([x,y,z],dtype=int) 从Python列表和

  • Python基础之Numpy的基本用法详解

    一.数据生成 1.1 手写数组 a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) # 一维数组 b = np.array([[1, 2], [3, 4]]) #二维数组 1.2 序列数组 numpy.arange(start, stop, step, dtype),start默认0,step默认1 c = np.arange(0, 10, 1, dtype=int) # =np.arange(10) [0 1 2 3 4 5 6 7 8 9] d

  • Python数据清洗工具之Numpy的基本操作

    1. Numpy(Numberical Python) Anaconda中已经集成了NumPy,可以直接使用.如果想要自行安装的话,可以使用流行的Python 包安装程序 pip 来安装 NumPy,目前使用的是Anaconde的环境进行学习和使用这个库 1.1 这库的安装方法 CMD :pip install numpy 或者使用清华源的镜像库:pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple (直接复制可用) 如果想查

  • Python numpy中np.random.seed()的详细用法实例

    目录 引言 E.G.实验 E.G.随机数种子参数的作用 补充:一个随机种子在代码中只作用一次,只作用于其定义位置的下一次随机数生成 总结 引言 在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同. numpy.randn.randn(d0,d1,...,dn) randn函数根据给定维度生成大概率在(-2.58~+2.58)之间的数据 randn函数返回一个或者一组样本,具有标准正态分布 dn表示每个维度 返回值为指定维度的arr

  • numpy中np.nditer、flags=[''multi_index''] 的用法说明

    在看CS231n的时候,有这么一行代码 it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite']) 查了查np.nditer原来是numpy array自带的迭代器.这里简单写个demo解释一下np.nditer的用法. 先构建一个3x4的矩阵 然后输入命令 flags=['multi_index']表示对a进行多重索引,具体解释看下面的代码. op_flags=['readwrite']表示不仅可以对a进行read(读取),

  • 关于numpy中np.nonzero()函数用法的详解

    np.nonzero函数是numpy中用于得到数组array中非零元素的位置(数组索引)的函数.一般来说,通过help(np.nonzero)能够查看到该函数的解析与例程.但是,由于例程为英文缩写,阅读起来还是很费劲,因此,本文将其英文解释翻译成中文,便于理解. 解释 nonzero(a) 返回数组a中非零元素的索引值数组. (1)只有a中非零元素才会有索引值,那些零值元素没有索引值: (2)返回的索引值数组是一个2维tuple数组,该tuple数组中包含一维的array数组.其中,一维arra

  • Numpy中np.max的用法及np.maximum区别

    Numpy中np.max(即np.amax)的用法 >>> import numpy as np >>> help(np.max) 当遇到一个不认识的函数,我们就需要查看一下帮助文档 np.max与np.amax是同名函数 amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>) Return the maximum

  • numpy中np.dstack()、np.hstack()、np.vstack()用法

    目录 np.dstack() np.hstack() np.vstack() 在写代码时,经常会遇到多个矩阵数组拼接的情况,numpy里dstack, hstack, vstack, 都有拼接的作用,那么这些函数是怎么执行的,他们的结果又如何呢? np.dstack() 按深度顺序堆叠arrays.当数组为2维数组(M,N)或1维数组(N,)时,首先分别将其维度改变为(M,N,1).(1,N,1),然后沿着第三根轴(r/g/b通道)进行拼接.栗子: # 一维 a = np.array([1, 2

  • 浅谈numpy中np.array()与np.asarray的区别以及.tolist

    array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 1.输入为列表时 a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c) 从中我们可以看出np.array与np.asarray功能是一样的,都是将输入转为矩阵格式.当输入是列表的时候,更改

  • Numpy中np.random.rand()和np.random.randn() 用法和区别详解

    numpy.random.rand(d0, d1, -, dn)的随机样本位于[0, 1)中:本函数可以返回一个或一组服从**"0~1"均匀分布**的随机样本值. numpy.random.randn(d0, d1, -, dn)是从标准正态分布中返回一个或多个样本值. 1. np.random.rand() 语法: np.random.rand(d0,d1,d2--dn) 注:使用方法与np.random.randn()函数相同 作用: 通过本函数可以返回一个或一组服从"0

  • numpy中np.nanmax和np.max的区别及坑

    目录 np.nanmax和np.array([1,2,3,np.nan]).max()的区别 原理 速度区别 numpy中nan和常用方法 np.nanmax和np.array([1,2,3,np.nan]).max()的区别 numpy中numpy.nanmax的官方文档 原理 在计算dataframe最大值时,最先用到的一定是Series对象的max()方法(),最终结果是4. s1 = pd.Series([1,2,3,4,np.nan]) s1_max = s1.max() 但是笔者由于

  • 浅谈python numpy中nonzero()的用法

    nonzero函数返回非零元素的目录. 返回值为元组, 两个值分别为两个维度, 包含了相应维度上非零元素的目录值. import numpy as np A = np.mat([[0,1,2,3,4,3,2,1,0],[0,1,2,3,4,5,6,7,0]]) x = A.nonzero() #取出矩阵中的非零元素的坐标 print x #输出是一个元组,两个维度.一一对应, #返回非零元素在矩阵中的位置,前一个列表存放非零行坐标,后一个列表存放非零元素列坐标 #(array([0, 0, 0,

  • python numpy中multiply与*及matul 的区别说明

    1.对于矩阵(matrix)而言 multiply是对应元素相乘,而 * .np.matmul() 函数 与 np.dot()函数 相当于矩阵乘法(矢量积),对应的列数和行数必须满足乘法规则:如果希望以数量积的方式进行,则必须使用 np.multiply 函数,如下所示: a = np.mat([[1, 2, 3, 4, 5]]) b = np.mat([[1,2,3,4,5]]) c=np.multiply(a,b) print(c) 结果是 [[ 1 4 9 16 25]] a = np.m

随机推荐