如何用python识别滑块验证码中的缺口

验证码往往是爬虫路上的一只拦路虎,而其花样也是层出不穷:图片验证、滑块验证、交互式验证、行为验证等。随着OCR技术的成熟,图片验证已经渐渐淡出主流,而滑块验证越来越多地出现在大众视野。
“这么厉害,这小子长啥样呢?”没错,它就长这损sai:

解决它的方法也很直观,首先找到缺口的位置(通常只需要X轴的位置),然后拖动滑块即可。
今天kimol君将带领大家用python识别出滑块验证中的缺口位置。

一、缺口识别

识别图片中的缺口,主要是利用python中的图像处理库cv2,其安装方法如下:

pip install opencv-python

注:这里并不是“pip install cv2”哦~

1.读取图片

滑块验证的图片分为两部分,一个是背景图片:

另一个是缺口图片:

利用imread函数将其读取:

# 读取背景图片和缺口图片
bg_img = cv2.imread('bg.jpg') # 背景图片
tp_img = cv2.imread('tp.png') # 缺口图片

2.识别图片边缘

为了更好地将缺口与背景匹配,我们首先得识别出图片的边缘:

# 识别图片边缘
bg_edge = cv2.Canny(bg_img, 100, 200)
tp_edge = cv2.Canny(tp_img, 100, 200)

这一步很关键!否则缺口匹配将不准确。

这里得到了图片边缘的灰度图,进一步将其图片格式转为RGB格式:

# 转换图片格式
bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)
tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)

转换后的背景图为:

转换后的缺口图为:

3.缺口匹配

利用cv2中的matchTemplate函数,可以在背景图片中搜索对应的缺口,具体代码如下:

# 缺口匹配
res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)

res为每个位置的匹配结果,代表了匹配的概率,选出其中概率最高的点,即为缺口匹配的位置:

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # 寻找最优匹配

min_val,max_val,min_loc,max_loc分别为匹配的最小值、匹配的最大值、最小值的位置、最大值的位置。
ps.当然,这里完全可以自己写一个循环来实现,但是有现成的函数为什么不用呢?

至此,我们已经有了缺口的位置,其X轴坐标为:

X = max_loc[0]

为了更直观地展示缺口的位置,我们将缺口用矩形框标注出来:

# 绘制方框
th, tw = tp_pic.shape[:2]
tl = max_loc # 左上角点的坐标
br = (tl[0]+tw,tl[1]+th) # 右下角点的坐标
cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2) # 绘制矩形
cv2.imwrite('out.jpg', bg_img) # 保存在本地

结果如下:

完美~ 收工!!!

二、完整代码

为了在实际应用中更方便的使用,我们将代码封装为一个函数:

def identify_gap(bg,tp,out):
 '''
 bg: 背景图片
 tp: 缺口图片
 out:输出图片
 '''
 # 读取背景图片和缺口图片
 bg_img = cv2.imread(bg) # 背景图片
 tp_img = cv2.imread(tp) # 缺口图片

 # 识别图片边缘
 bg_edge = cv2.Canny(bg_img, 100, 200)
 tp_edge = cv2.Canny(tp_img, 100, 200)

 # 转换图片格式
 bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)
 tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)

 # 缺口匹配
 res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)
 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # 寻找最优匹配

 # 绘制方框
 th, tw = tp_pic.shape[:2]
 tl = max_loc # 左上角点的坐标
 br = (tl[0]+tw,tl[1]+th) # 右下角点的坐标
 cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2) # 绘制矩形
 cv2.imwrite(out, bg_img) # 保存在本地

 # 返回缺口的X坐标
 return tl[0]

这里选择了读取本地图片文件,在爬虫过程中其实不是特别方便。如果有感兴趣的小伙伴,可以自己改动一下,将输入改为图片流即可。

以上就是如何用python识别滑块中的缺口的详细内容,更多关于python识别滑块中的缺口的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python3爬虫关于识别检验滑动验证码的实例

    上节我们了解了图形验证码的识别,简单的图形验证码我们可以直接利用 Tesserocr 来识别,但是近几年又出现了一些新型验证码,如滑动验证码,比较有代表性的就是极验验证码,它需要拖动拼合滑块才可以完成验证,相对图形验证码来说识别难度上升了几个等级,本节来讲解下极验验证码的识别过程. 1. 本节目标 本节我们的目标是用程序来识别并通过极验验证码的验证,其步骤有分析识别思路.识别缺口位置.生成滑块拖动路径,最后模拟实现滑块拼合通过验证. 2. 准备工作 本次我们使用的 Python 库是 Selen

  • 使用Python的OpenCV模块识别滑动验证码的缺口(推荐)

    最近终于找到一个好的方法,使用Python的OpenCV模块识别滑动验证码的缺口,可以将滑动验证码中的缺口识别出来了. 测试使用如下两张图片: target.jpg template.png 现在想要通过"template.png"在"target.jpg"中找到对应的缺口,代码实现如下: # encoding=utf8 import cv2 import numpy as np def show(name): cv2.imshow('Show', name) cv

  • python爬虫之验证码篇3-滑动验证码识别技术

    滑动验证码介绍 本篇涉及到的验证码为滑动验证码,不同于极验证,本验证码难度略低,需要的将滑块拖动到矩形区域右侧即可完成. 这类验证码不常见了,官方介绍地址为:https://promotion.aliyun.com/ntms/act/captchaIntroAndDemo.html 使用起来肯定是非常安全的了,不是很好通过机器检测 如何判断验证码类型 这个验证码的标识一般比较明显,在页面源码中一般存在一个 nc.js 基本可以判定是阿里云的验证码了 <script type="text/j

  • python 模拟网站登录——滑块验证码的识别

    普通滑动验证 以http://admin.emaotai.cn/login.aspx为例这类验证码只需要我们将滑块拖动指定位置,处理起来比较简单.拖动之前需要先将滚动条滚动到指定元素位置. import time from selenium import webdriver from selenium.webdriver import ActionChains # 新建selenium浏览器对象,后面是geckodriver.exe下载后本地路径 browser = webdriver.Fire

  • Python实现图片滑动式验证识别方法

    1 abstract 验证码作为一种自然人的机器人的判别工具,被广泛的用于各种防止程序做自动化的场景中.传统的字符型验证安全性已经名存实亡的情况下,各种新型的验证码如雨后春笋般涌现.目前最常见的一种形式就是"滑动拼图式" 2 内容概述 关于滑动式验证,最早由国内某网络安全公司首次提出的行为式验证,以滑动拼图解锁的方式呈现在世人面前.然后大概过了好几年之后,各种各样的滑动式验证产品都出来了,那么这些看似一样的产品,它们的安全性到底如何呢? 本文特意挑选出了一些后来者的小厂商的滑动式验证来

  • Python3网络爬虫开发实战之极验滑动验证码的识别

    上节我们了解了图形验证码的识别,简单的图形验证码我们可以直接利用 Tesserocr 来识别,但是近几年又出现了一些新型验证码,如滑动验证码,比较有代表性的就是极验验证码,它需要拖动拼合滑块才可以完成验证,相对图形验证码来说识别难度上升了几个等级,本节来讲解下极验验证码的识别过程. 1. 本节目标 本节我们的目标是用程序来识别并通过极验验证码的验证,其步骤有分析识别思路.识别缺口位置.生成滑块拖动路径,最后模拟实现滑块拼合通过验证. 2. 准备工作 本次我们使用的 Python 库是 Selen

  • Python破解BiliBili滑块验证码的思路详解(完美避开人机识别)

    准备工作 B站登录页 https://passport.bilibili.com/login python3 pip install selenium (webdriver框架) pip install PIL (图片处理) chrome driver:http://chromedriver.storage.googleapis.com/index.html firefox driver:https://github.com/mozilla/geckodriver/releases B站的滑块验

  • python验证码识别教程之滑动验证码

    前言 上篇文章记录了2种分割验证码的方法,此外还有一种叫做"滴水算法"(Drop Fall Algorithm)的方法,但本人智商原因看这个算法看的云里雾里的,所以今天记录滑动验证码的处理吧.网上据说有大神已经破解了滑动验证码的算法,可以不使用selenium来破解,但本人能力不足还是使用笨方法吧. 基础原理很简单,首先点击验证码按钮后的图片是滑动后的完整结果,点击一下滑块后会出现拼图,对这2个分别截图后比较像素值来找出滑动距离,并结合selenium来实现拖拽效果. 至于seleni

  • 如何用python识别滑块验证码中的缺口

    验证码往往是爬虫路上的一只拦路虎,而其花样也是层出不穷:图片验证.滑块验证.交互式验证.行为验证等.随着OCR技术的成熟,图片验证已经渐渐淡出主流,而滑块验证越来越多地出现在大众视野. "这么厉害,这小子长啥样呢?"没错,它就长这损sai: 解决它的方法也很直观,首先找到缺口的位置(通常只需要X轴的位置),然后拖动滑块即可. 今天kimol君将带领大家用python识别出滑块验证中的缺口位置. 一.缺口识别 识别图片中的缺口,主要是利用python中的图像处理库cv2,其安装方法如下:

  • mac使用python识别图形验证码功能

    前言 最近在研究验证码相关的操作,所以准备记录下安装以及使用的过程.虽然之前对验证码的破解有所了解的,但是之前都是简单使用之后就不用了,没有记录一个详细的过程,所以后面再用起来也要重新从网上查找资料比较麻烦,所以这里准备对研究过程的关键点做一个记录. 首先这篇文章,主要是研究图形验证码,后期会不定时拓展内容. 在网上查了很多版本的图形验证码识别,目前看到最多的两个模块是pytesseract和tesserocr,但是因为我这里安装tesserocr的时候各种出错,所以最终我锁定了使用pytess

  • python 识别登录验证码图片功能的实现代码(完整代码)

    在编写自动化测试用例的时候,每次登录都需要输入验证码,后来想把让python自己识别图片里的验证码,不需要自己手动登陆,所以查了一下识别功能怎么实现,做一下笔记. 首选导入一些用到的库,re.Image.pytesseract.selenium.time import re # 用于正则 from PIL import Image # 用于打开图片和对图片处理 import pytesseract # 用于图片转文字 from selenium import webdriver # 用于打开网站

  • Python实现滑块验证码详解

    目录 本节要讲解如下图所示的滑块验证码(更为复杂的滑动拼图验证码在2.4节介绍).这种验证码机制比较简单:将滑块拖动到滑轨的最右端即可完成验证,如下图所示.如果未将滑块拖动到滑轨的最右端,则无法通过验证,验证失败后滑块会回到起始位置. 其中的关键是需要用Selenium库模拟鼠标拖动滑块滑动一定的距离.因为滑块的起始位置和滑轨的起始位置相同,所以滑块需要移动的距离等于滑轨的跨度减去滑块的宽度.下面就来利用开发者工具查看滑轨和滑块的宽度. 在浏览器中打开本书配套代码文件中为滑块验证码搭建的本地网页

  • Python识别处理照片中的条形码

    最近一直在玩数独,突发奇想实现图像识别求解数独,输入到输出平均需要0.5s. 整体思路大概就是识别出图中数字生成list,然后求解. 输入输出demo 数独采用的是微软自带的Microsoft sudoku软件随便截取的图像,如下图所示: 经过程序求解后,得到的结果如下图所示: def getFollow(varset, terminalset, first_dic, production_list):     follow_dic = {}     done = {}     for var

  • 非常简单的Python识别图片验证码实现过程

    很久之前,分享过一次Python代码实现验证码识别的办法. 当时采用的是pillow+pytesseract,优点是免费,较为易用.但其识别精度一般,若想要更高要求的验证码识别,初学者就只能去选择使用百度API接口了. 但其实百度API接口和pytesseract其实都需要进行前期配置,对于初学者来说就不太友好了. 而且百度API必须要联网,对于某些机器不能联网的朋友而言,就得pass了 最近群里有位群友分享了一个新库,试用一下发现非常实用,特意今天分享给大家. Github地址:https:/

  • 如何用Python识别车牌的示例代码

    目录 简介 实现方式 自己实现 第三方接口 具体实现 SDK 安装 创建应用 具体实现 最后 车牌识别在高速公路中有着广泛的应用,比如我们常见的电子收费(ETC)系统和交通违章车辆的检测,除此之外像小区或地下 车库门禁也会用到,基本上凡是需要对车辆进行身份检测的地方都会用到. 简介 车牌识别系统(Vehicle License Plate Recognition)是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常一个车牌识 别系统主要包括以下这四个部分: 车辆图像获取 车牌定位 车牌字符分

  • python识别和降噪动态验证码与滑动验证码

    目录 一.动态验证码 二.滑动验证码 三.验证码的降噪 四.验证码的识别 〝 古人学问遗无力,少壮功夫老始成 〞 python对动态验证码.滑动验证码的降噪和识别,在各种自动化操作中,我们经常要遇到沿跳过验证码的操作,而对于验证码的降噪和识别,的确困然了很多的人.这里我们就详细讲解一下不同验证码的降噪和识别.如果这篇文章能给你带来一点帮助,希望各位小伙伴们多多支持我们. 一.动态验证码 动态验证码是服务端生成的,点击一次,就会更换一次,这就会造成很多人在识别的时候,会发现验证码一直过期 这是因为

  • 利用Python+Selenium破解春秋航空网滑块验证码的实战过程

    目录 前言 开发工具 环境搭建 实战记录 一. 验证码简介 二.破解滑块验证码 2.1 计算滑块到缺口的距离 2.2 将滑块拖到缺口位置 前言 记录一次利用Python+Selenium破解滑块验证码的实战过程. 让我们愉快地开始吧~ 开发工具 Python版本: 3.6.4 相关模块: pillow模块: selenium模块: numpy模块: 以及一些Python自带的模块. 其他: chromedriver 环境搭建 安装Python并添加到环境变量,pip安装需要的相关模块即可. 实战

随机推荐