python线程优先级队列知识点总结

Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue。

1、说明

这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步。

模块中的常用方法如下:

  • Queue.qsize() 返回队列的大小
  • Queue.empty() 如果队列为空,返回True,反之False
  • Queue.full() 如果队列满了,返回True,反之False
  • Queue.full 与 maxsize 大小对应
  • Queue.get([block[, timeout]])获取队列,timeout等待时间
  • Queue.get_nowait() 相当Queue.get(False)
  • Queue.put(item) 写入队列,timeout等待时间
  • Queue.put_nowait(item) 相当Queue.put(item, False)
  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
  • Queue.join() 实际上意味着等到队列为空,再执行别的操作

2、实例

#!/usr/bin/python3
import queue
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
  def __init__(self, threadID, name, q):
    threading.Thread.__init__(self)
    self.threadID = threadID
    self.name = name
    self.q = q
  def run(self):
    print ("开启线程:" + self.name)
    process_data(self.name, self.q)
    print ("退出线程:" + self.name)
def process_data(threadName, q):
  while not exitFlag:
    queueLock.acquire()
    if not workQueue.empty():
      data = q.get()
      queueLock.release()
      print ("%s processing %s" % (threadName, data))
    else:
      queueLock.release()
    time.sleep(1)
threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = queue.Queue(10)
threads = []
threadID = 1
# 创建新线程
for tName in threadList:
  thread = myThread(threadID, tName, workQueue)
  thread.start()
  threads.append(thread)
  threadID += 1
# 填充队列
queueLock.acquire()
for word in nameList:
  workQueue.put(word)
queueLock.release()
# 等待队列清空
while not workQueue.empty():
  pass
# 通知线程是时候退出
exitFlag = 1
# 等待所有线程完成
for t in threads:
  t.join()
print ("退出主线程")

知识点扩展:

问题

怎样实现一个按优先级排序的队列? 并且在这个队列上面每次 pop 操作总是返回优先级最高的那个元素

解决方案

下面的类利用 heapq 模块实现了一个简单的优先级队列:

import heapq

class PriorityQueue:
 def __init__(self):
 self._queue = []
 self._index = 0

 def push(self, item, priority):
 heapq.heappush(self._queue, (-priority, self._index, item))
 self._index += 1

 def pop(self):
 return heapq.heappop(self._queue)[-1]

下面是它的使用方式:

>>> class Item:
... def __init__(self, name):
...  self.name = name
... def __repr__(self):
...  return 'Item({!r})'.format(self.name)
...
>>> q = PriorityQueue()
>>> q.push(Item('foo'), 1)
>>> q.push(Item('bar'), 5)
>>> q.push(Item('spam'), 4)
>>> q.push(Item('grok'), 1)
>>> q.pop()
Item('bar')
>>> q.pop()
Item('spam')
>>> q.pop()
Item('foo')
>>> q.pop()
Item('grok')
>>>

到此这篇关于python线程优先级队列知识点总结的文章就介绍到这了,更多相关python线程优先级队列有哪些内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现一个优先级队列的方法

    问题 怎样实现一个按优先级排序的队列? 并且在这个队列上面每次 pop 操作总是返回优先级最高的那个元素 解决方案 下面的类利用 heapq 模块实现了一个简单的优先级队列: import heapq class PriorityQueue: def __init__(self): self._queue = [] self._index = 0 def push(self, item, priority): heapq.heappush(self._queue, (-priority, sel

  • Python中栈、队列与优先级队列的实现方法

    前言 栈.队列和优先级队列都是非常基础的数据结构.Python作为一种"编码高效"的语言,对这些基础的数据结构都有比较好的实现.在业务需求开发过程中,不应该重复造轮子,今天就来看看些数据结构都有哪些实现. 0x00 栈(Stack) 栈是一种LIFO(后进先出)的数据结构,有入栈(push).出栈(pop)两种操作,且只能操作栈顶元素. 在Python中有多种可以实现栈的数据结构. 1.list list是Python内置的列表数据结构,它支持栈的特性,有入栈和出栈操作.只不过用lis

  • Python利用heapq实现一个优先级队列的方法

    实现一个优先级队列,每次pop的元素要是优先级高的元素,由于heapq.heapify(list)默认构建一个小顶堆,因此要将priority变为相反数再push,代码如下: import heapq class PriorityQueue(object): """实现一个优先级队列,每次pop优先级最高的元素""" def __init__(self): self._queue = [] self._index = 0 def push(sel

  • Python表达式的优先级详解

    表达式的优先级 表达式(Expression)是运算符(operator)和操作数(operand)所构成的序列 代码段 a = 1 b = 2 c = 3 print("表达式计算结果是:",a or b and c) 结果输出 表达式计算结果是: 1 会优先计算 and,取值3,后面计算or,最后结果为1 运算符 描述 ** 指数 (最高优先级) ~ + - 按位翻转, 一元加号和减号 (最后两个的方法名为 +@ 和 -@) * / % // 乘,除,取模和取整除 + - 加法减法

  • Python cookbook(数据结构与算法)实现优先级队列的方法示例

    本文实例讲述了Python实现优先级队列的方法.分享给大家供大家参考,具体如下: 问题:要实现一个队列,它能够以给定的优先级对元素排序,且每次pop操作时都会返回优先级最高的那个元素: 解决方案:采用heapq模块实现一个简单的优先级队列 # example.py # # Example of a priority queue import heapq class PriorityQueue: def __init__(self): self._queue = [] self._index =

  • python线程优先级队列知识点总结

    Python 的 Queue 模块中提供了同步的.线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue. 1.说明 这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步. 模块中的常用方法如下: Queue.qsize() 返回队列的大小 Queue.empty() 如果队列为空,返回True,反之False Queue.full() 如果队列满了,返回True,反之False Q

  • Python实现优先级队列结构的方法详解

    最简单的实现 一个队列至少满足2个方法,put和get. 借助最小堆来实现. 这里按"值越大优先级越高"的顺序. #coding=utf-8 from heapq import heappush, heappop class PriorityQueue: def __init__(self): self._queue = [] def put(self, item, priority): heappush(self._queue, (-priority, item)) def get(

  • Python线程之线程安全的队列Queue

    目录 一.什么是队列? 二.队列基操入队/出队/查队列状态 三.Queue是一个线程安全的类 一.什么是队列? 像排队一样,从头到尾排成一排,还可以有人继续往后排队,这就是队列. 这里学委想说的是Queue这个类, 它是queue这个内置模块内的一个类. import queue q = queue.Queue(5) #可以传入参数指定队列大小 queue.Queue()# 不传或者给0或者<0的数字则创建一个无限长度的队列 它提供了很多函数,下面几个函数,我们使用的比较多: get: 获取并移

  • Python数据结构之优先级队列queue用法详解

    一.基本用法 Queue类实现了一个基本的先进先出容器.使用put()将元素增加到这个序列的一端,使用get()从另一端删除.具体代码如下所示: import queue q = queue.Queue() for i in range(1, 10): q.put(i) while not q.empty(): print(q.get(), end=" ") 运行之后,效果如下: 这里我们依次添加1到10到队列中,因为先进先出,所以出来的顺序也与添加的顺序相同. 二.LIFO队列 既然

  • python分布式爬虫中消息队列知识点详解

    当排队等待人数过多的时候,我们需要设置一个等待区防止秩序混乱,同时再有新来的想要排队也可以呆在这个地方.那么在python分布式爬虫中,消息队列就相当于这样的一个区域,爬虫要进入这个区域找寻自己想要的资源,当然这个是一定的次序的,不然数据获取就会出现重复.就下来我们就python分布式爬虫中的消息队列进行详细解释,小伙伴们可以进一步了解一下. 实现分布式爬取的关键是消息队列,这个问题以消费端为视角更容易理解.你的爬虫程序部署到很多台机器上,那么他们怎么知道自己要爬什么呢?总要有一个地方存储了他们

  • Python的线程使用队列Queue来改造转账场景

    目录 一.看看转账场景的问题 二.这种问题怎么使用队列来解决呢? 三.总结 前篇我们了队列Queue和转账场景这次趁热学委展示一下使用队列解决转账场景的问题. 一.看看转账场景的问题 前面有两篇文章展示了转账反复读写amount,导致结果出错. xuewei_account = dict() xuewei_account['amount'] = 100 # amount为负数即是转出金额 def transfer(money):     for i in range(100000):      

随机推荐