R语言histogram(直方图)的具体使用
最近小仙同学很是烦恼,本以为自己已经掌握了ggplot2作图的语法,用read.csv(), ggplot()+geom_point()/boxplot()/violinplot()…就可以画遍天下图表,结果却发现到真正画图的时候,还是会出现不少的小问题。
比如小仙最近要画一个直方图,最开始用hist()函数试了一下,看了下形状, 好像因为数据取值范围跨度太大(最大值104,724,最小值30),这个图画出来有点丑,于是决定用ggplot美化一下。
调整之后好看是好看了,但是大家有没有看出什么不对的地方,明明bins=10但是只画出8个格子,之后调整bins的值,每次都会比我指定的值少2个格子。而且,图中第一个格子(取值范围0-1250)应该有700多个数据,但是图上显示只有不到300个,问题出在哪里呢?小仙同学百思不得其解。在geom_histogram()函数中,bins就是用来指定分组数目(格子),为什么总是会少两个?
小仙同学考虑到自己能力有限,决定量力而行,另辟蹊径。
于是设置另外一个参数breaks,终于找回了丢失的格子
经过此事,小仙同学深刻认识到了自己的有限水平,哈哈。不过还是分享一下,希望能帮助到大家。实际的数据可真是比书上的例子难处理呢。
按照惯例写一下整个作图的过程。
Step1. 绘图数据的准备
首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式。
Step2. 绘图数据的读取
data<-read.csv(“your file path”, header = T) #注释:header=T表示数据中的第一行是列名,如果没有列名就用header=F
Step3.绘图所需package的安装、调用
library(ggplot2) #注释:package使用之前需要调用
Step4.绘图
p<-ggplot(data, aes(x=data$销量)) + geom_histogram(breaks=seq(0,10000,1000))+ xlim(0,10000) p
到此这篇关于R语言histogram(直方图)的具体使用的文章就介绍到这了,更多相关R语言 直方图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
相关推荐
-
R语言如何将大型Excel文件转为dta格式详解
本文以2000年度我国工业企业数据库为例,该文件后缀名为xlsx,包含约16万条记录,文件有88M这么大.直接使用Excel打开都费劲:等待时间久,电脑风扇呼呼呼作响.如果尝试用Stata打开该xlsx文件,则会出现提示报错. 报错原因在于,Stata无法读取超过40M的Excel文件. 这就好比瓜迪奥拉的传控足球固然美丽,但是面对摆大巴的球队无能为力. 破大巴需要攻城锤,这把锤子的名字就是R语言.万事开头难啊,正憧憬着数据清洗和花式选取变量建模呢,可不能连数据们长啥模样都没见着啊.R语言适时挺
-
如何用R语言绘制散点图
散点图是将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定,每个点对应一个 X 和 Y 轴点坐标. 散点图可以使用 plot() 函数来绘制,语法格式如下: plot(x, y, type="p", main, xlab, ylab, xlim, ylim, axes) x 横坐标 x 轴的数据集合 y 纵坐标 y 轴的数据集合 type:绘图的类型,p 为点.l 为直线, o 同时绘制点和线,且线穿过点. main 图表标题. xlab.
-
R语言 实现输出九九乘法表
在R语言中,使用cat()函数可以将多个变量连接起来并输出到控制台或者File文件中. 下面,以九九乘法表为例来 演示cat()函数的用法 //jiujiubiao.R ## 九九乘法表 for(i in 1:9){ for(j in 1:i){ m = j*i cat(i,'*',j,'=',m,' ') } cat('\n') } 效果如下: 图(1) 使用cat()输出九九乘法表 补充:R语言 用 sprintf 打印九九乘法表 九九乘法表 for (i in c(1:9)) { for
-
R语言绘图如何支持中文
不同系统的字体库目录: Linux 一般在 /usr/share/fonts 下,我们可以使用 fc-list 命令查看: # fc-list /usr/share/fonts/truetype/dejavu/DejaVuSerif-Bold.ttf: DejaVu Serif:style=Bold /usr/share/fonts/truetype/dejavu/DejaVuSansMono.ttf: DejaVu Sans Mono:style=Book /usr/share/fonts/t
-
R语言 出现矩阵/缺失值的解决方案
缺失值处理一般包括三步: 1. 识别缺失数据: 2. 检查导致数据缺失的原因: 3. 删除包含缺失值的实例或用合理的数值代替(插补)缺失值. 1.判断缺失值 函数is.na().is.nan()和is.infinite()可分别用来识别缺失值.不可能值和无穷值.每个返回结果都是 TRUE或FALSE na表示缺失值 nan表示NOT A NUMBER infinite表示+-Inf 一定要亲手试x = 0/0,以及x = 1/0 >x <- NA > is.na(x) [1] TRUE
-
R语言多元Logistic逻辑回归应用实例
可以使用逐步过程确定多元逻辑回归.此函数选择模型以最小化AIC. 如何进行多元逻辑回归 可以使用阶梯函数通过逐步过程确定多元逻辑回归.此函数选择模型以最小化AIC. 通常建议不要盲目地遵循逐步程序,而是要使用拟合统计(AIC,AICc,BIC)比较模型,或者根据生物学或科学上合理的可用变量建立模型. 多元相关是研究潜在自变量之间关系的一种工具.例如,如果两个独立变量彼此相关,可能在最终模型中都不需要这两个变量,但可能有理由选择一个变量而不是另一个变量. 多元相关 创建数值变量的数据框 Data.
-
R语言导入导出数据的几种方法汇总
导出: 对于某一数据集导出文件的方法 导出例子:write.csv(data_1,file = "d:/1111111111.csv") 其中data_1是你的数据集,file是你的存储路径和要存储的名字 导入: 1 使用键盘输入数据 (1) 创建一个空数据框(或矩阵),其中变量名和变量的模式需与理想中的最终数据集一致: (2)针对这个数据对象调用文本编辑器,输入你的数据,并将结果保存回此数据对象中. 在下例中,你将创建一个名为mydata的数据框,它含有三个变量:age(数值型).
-
R语言是什么 R语言简介
R是由Ross Ihaka和Robert Gentleman在1993年开发的一种编程语言,R拥有广泛的统计和图形方法目录.它包括机器学习算法.线性回归.时间序列.统计推理等.大多数R库都是用R编写的,但是对于繁重的计算任务,最好使用C.c++和Fortran代码. R不仅在学术界很受欢迎,很多大公司也使用R编程语言,包括Uber.谷歌.Airbnb.Facebook等.用R进行数据分析需要一系列步骤:编程.转换.发现.建模和交流结果 R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统
-
R语言作图之直方图histogram绘制过程详解
先给大家介绍下R语言入门:直方图histogram的绘制,具体内容如下所示: 直方图和条形图最大的不同则是直方图可以用于显示出一个数据的频数,具有统计的作用,我们下面来看一一看直方图在R语言当中是如何绘制的吧! 首先创建一系列的数据: h<-c(4,6,3,46,3,5,7,8,3,4,3,4,5) 创建完之后将这个数据纳入到直方图histogram的绘制函数hist()当中,如下所示: hist(h,xlab = "number'scale",ylab="Right&
-
如何用R语言绘制饼图和条形图
R 语言提供来大量的库来实现绘图功能. 饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表,用于描述量.频率或百分比之间的相对关系. R 语言使用 pie() 函数来实现饼图,语法格式如下: pie(x, labels = names(x), edges = 200, radius = 0.8, clockwise = FALSE, init.angle = if(clockwise) 90 else 0, density = NULL, angle = 45, col = NULL, bor
-
大数据分析R语言RStudio使用超详细教程
RStudio是用于R编程的开源工具.如果您对使用R编程感兴趣,则值得了解RStudio的功能.它是一种灵活的工具,可帮助您创建可读的分析,并将您的代码,图像,注释和图解保持在一起. 在此大数据分析R语言RStudio使用教程文章中,我们将介绍RStudio免费版本的一些最佳功能:RStudio Desktop.我们收集了一些RStudio的重要技巧,窍门和快捷方式,可快速将您变成RStudio高级用户! 1.在窗口窗格之间快速导航 RStudio窗格可让您访问有关项目的重要信息.知道如何在窗格
随机推荐
- php版微信开发Token验证失败或请求URL超时问题的解决方法
- 软件测试面试如何测试网页的登录页面
- Mysql中的join操作
- 深入理解angular2启动项目步骤
- JS运动基础框架实例分析
- php统计数组元素个数的方法
- 教你轻松制作Android音乐播放器
- Node.js中的事件驱动编程详解
- XML轻松学习手册(4)XML语法
- Ruby最简单的消息服务器代码
- javascript简单实现类似QQ头像弹出效果的方法
- 自己使用jquery写的一个无缝滚动的插件
- Javascript学习笔记之数组的遍历和 length 属性
- Java函数式编程(六):Optional
- 网站排名有了中国标准 转
- canvas轨迹回放功能实现
- OpenCV实现马赛克和毛玻璃滤镜特效
- Pytorch卷积层手动初始化权值的实例
- 微信小程序中weui用法解析
- vue代码分割的实现(codesplit)