在keras里面实现计算f1-score的代码

我就废话不多说了,大家还是直接看代码吧!

### 以下链接里面的code
import numpy as np
from keras.callbacks import Callback
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score
class Metrics(Callback):
def on_train_begin(self, logs={}):
 self.val_f1s = []
 self.val_recalls = []
 self.val_precisions = []

def on_epoch_end(self, epoch, logs={}):
 val_predict = (np.asarray(self.model.predict(self.model.validation_data[0]))).round()
 val_targ = self.model.validation_data[1]
 _val_f1 = f1_score(val_targ, val_predict)
 _val_recall = recall_score(val_targ, val_predict)
 _val_precision = precision_score(val_targ, val_predict)
 self.val_f1s.append(_val_f1)
 self.val_recalls.append(_val_recall)
 self.val_precisions.append(_val_precision)
 print “ — val_f1: %f — val_precision: %f — val_recall %f” %(_val_f1, _val_precision, _val_recall)
 return

metrics = Metrics()
model.fit(
 train_instances.x,
 train_instances.y,
 batch_size,
 epochs,
 verbose=2,
 callbacks=[metrics],
 validation_data=(valid_instances.x, valid_instances.y),
)

补充知识:Keras可使用的评价函数

1:binary_accuracy(对二分类问题,计算在所有预测值上的平均正确率)

binary_accuracy(y_true, y_pred)

2:categorical_accuracy(对多分类问题,计算在所有预测值上的平均正确率)

categorical_accuracy(y_true, y_pred)

3:sparse_categorical_accuracy(与categorical_accuracy相同,在对稀疏的目标值预测时有用 )

sparse_categorical_accuracy(y_true, y_pred)

4:top_k_categorical_accuracy(计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确 )

top_k_categorical_accuracy(y_true, y_pred, k=5)

5:sparse_top_k_categorical_accuracy(与top_k_categorical_accracy作用相同,但适用于稀疏情况)

sparse_top_k_categorical_accuracy(y_true, y_pred, k=5)

以上这篇在keras里面实现计算f1-score的代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 升级keras解决load_weights()中的未定义skip_mismatch关键字问题

    1.问题描述 在用yolov3训练自己的数据集时,尝试加载预训练的权重,在冻结前154层的基础上,利用自己的数据集finetune. 出现如下错误: load_weights(),got an unexpected keyword argument skip_mismatch 2.解决方法 因为keras旧版本没有这一定义,在新的版本中有这一关键字的定义,因此,更新keras版本至2.1.5即可解决. source activate env pip uninstall keras pip ins

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

  • 浅谈cv2.imread()和keras.preprocessing中的image.load_img()区别

    1.image.load_img() from keras.preprocessing import image img_keras = image.load_img('./original/dog/880.jpg') print(img_keras) img_keras = image.img_to_array(img_keras) print(img_keras[:,1,1]) 效果如下: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB s

  • keras 读取多标签图像数据方式

    我所接触的多标签数据,主要包括两类: 1.一张图片属于多个标签,比如,data:一件蓝色的上衣图片.jpg,label:蓝色,上衣.其中label包括两类标签,label1第一类:上衣,裤子,外套.label2第二类,蓝色,黑色,红色.这样两个输出label1,label2都是是分类,我们可以直接把label1和label2整合为一个label,直接编码,比如[蓝色,上衣]编码为[011011].这样模型的输出也只需要一个输出.实现了多分类. 2.一张图片属于多个标签,但是几个标签不全是分类.比

  • 在pytorch 中计算精度、回归率、F1 score等指标的实例

    pytorch中训练完网络后,需要对学习的结果进行测试.官网上例程用的方法统统都是正确率,使用的是torch.eq()这个函数. 但是为了更精细的评价结果,我们还需要计算其他各个指标.在把官网API翻了一遍之后发现并没有用于计算TP,TN,FP,FN的函数... 在动了无数歪脑筋之后,心想pytorch完全支持numpy,那能不能直接进行判断,试了一下果然可以,上代码: # TP predict 和 label 同时为1 TP += ((pred_choice == 1) & (target.d

  • 在keras里面实现计算f1-score的代码

    我就废话不多说了,大家还是直接看代码吧! ### 以下链接里面的code import numpy as np from keras.callbacks import Callback from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score class Metrics(Callback): def on_train_begin(self, logs={}): self.val_f1

  • Python实现计算AUC的示例代码

    目录 为什么这样一个指标可以衡量分类效果 auc理解 AUC计算 方法一 方法二 实现及验证 AUC(Area under curve)是机器学习常用的二分类评测手段,直接含义是ROC曲线下的面积,如下图: 要理解这张图的含义,得先理解下面这个表: 表中列代表预测分类,行代表实际分类: 实际1,预测1:真正类(tp) 实际1,预测0:假负类(fn) 实际0,预测1:假正类(fp) 实际0,预测0:真负类(tn) 真实负样本总数=n=fp+tn 真实正样本总数=p=tp+fn 在第一张图中, 横坐

  • 分享javascript计算时间差的示例代码

    在实际应用中,需要计算两个时间点之间的差距,一般来说都是计算当前时间和一个指定时间点之间的差距,并且有时候需要精确到天.小时.分钟和秒,下面就简单介绍一下如何实现此效果. 效果图: 距离新年: 代码如下: <html> <head> <title>javascript计算时间差</title> <style type="text/css"> #thenceThen { font-size:2em; } </style&g

  • Python3计算三角形的面积代码

    关于Python语言,众说纷纭,但无外乎两种,强大,垃圾.大多数人还是对Python持肯定意见,认为它很强大.前些天和两个的大学同学聊天,一个是在做手机测试,一个是给银行系统做维护一类的工作,都在北京.都在一边工作一边学习,其中一个学的就是Python.我也不能落后啊,走上了Python的不归路.我个人觉得对广大编程爱好者来说,尤其是在校大学生,大家可以有时间学习一门语言,对以后是很有帮助的. 以下实例为通过用户输入三角形三边长度,并计算三角形的面积: # -*- coding: UTF-8 -

  • android获取附近蓝牙设备并计算距离的实例代码

    需要用到本地蓝牙适配器 // 获取本地蓝牙适配器 mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter(); 判断是否支持蓝牙,并确认打开该功能. // 判断手机是否支持蓝牙 if (mBluetoothAdapter == null) { Toast.makeText(this, "设备不支持蓝牙", Toast.LENGTH_SHORT).show(); finish(); } // 判断是否打开蓝牙 if (!mBlueto

  • vue超时计算的组件实例代码

    需要对预约单进行超时计算,但是后台和客户端时间不能保证一定一直,所以后台返回客户提交时间和请求结束时间的时间差进行计算. 效果如下(此处只是demo效果,所以有点丑.) 父页面 <template> <div> <div class="dateDiv" :key="index" v-for="(item,index) in TimeArray"> <p>{{item.name}}</p>

  • keras读取h5文件load_weights、load代码操作

    关于保存h5模型.权重网上的示例非常多,也非常简单.主要有以下两个函数: 1.keras.models.load_model() 读取网络.权重 2.keras.models.load_weights() 仅读取权重 load_model代码包含load_weights的代码,区别在于load_weights时需要先有网络.并且load_weights需要将权重数据写入到对应网络层的tensor中. 下面以resnet50加载h5权重为例,示例代码如下 import keras from ker

  • Keras实现支持masking的Flatten层代码

    不知道为什么,我总是需要实现某种骚操作,而这种骚操作往往是Keras不支持的.例如,我有一个padding过的矩阵,那么它一定是带masking的,然后我想要把它Flatten,再输入到Dense层.然而Keras的Flatten层不支持masking. Keras原本Flatten的实现 class Flatten(Layer): def __init__(self, **kwargs): super(Flatten, self).__init__(**kwargs) self.input_s

  • 使用Keras实现Tensor的相乘和相加代码

    前言 最近在写行为识别的代码,涉及到两个网络的融合,这个融合是有加权的网络结果的融合,所以需要对网络的结果进行加权(相乘)和融合(相加). 最初的想法 最初的想法是用Keras.layers.Add和Keras.layers.Multiply来做,后来发现这样会报错. rate_rgb = k.variable(np.ones((1024,),dtype='float32')*0.8) rate_esti = k.variable(np.ones((1024,),dtype='float32')

随机推荐