golang常用加密解密算法总结(AES、DES、RSA、Sha1、MD5)

目录
  • 关于加密解密
  • AES
  • DES
  • RSA
  • MD5
  • Sha1
  • Base64

在项目开发过程中,当操作一些用户的隐私信息,诸如密码、帐户密钥等数据时,往往需要加密后可以在网上传输。这时,需要一些高效地、简单易用的加密算法加密数据,然后把加密后的数据存入数据库或进行其他操作;当需要读取数据时,把加密后的数据取出来,再通过算法解密。

关于加密解密

当前我们项目中常用的加解密的方式无非三种.

  • 对称加密, 加解密都使用的是同一个密钥, 其中的代表就是AES、DES
  • 非对加解密, 加解密使用不同的密钥, 其中的代表就是RSA
  • 签名算法, 如MD5、SHA1、HMAC等, 主要用于验证,防止信息被修改, 如:文件校验、数字签名、鉴权协议

Base64不是加密算法,它是一种数据编码方式,虽然是可逆的,但是它的编码方式是公开的,无所谓加密。本文也对Base64编码方式做了简要介绍。

AES

AES,即高级加密标准(Advanced Encryption Standard),是一个对称分组密码算法,旨在取代DES成为广泛使用的标准。AES中常见的有三种解决方案,分别为AES-128、AES-192和AES-256。
AES加密过程涉及到4种操作:字节替代(SubBytes)、行移位(ShiftRows)、列混淆(MixColumns)和轮密钥加(AddRoundKey)。解密过程分别为对应的逆操作。由于每一步操作都是可逆的,按照相反的顺序进行解密即可恢复明文。加解密中每轮的密钥分别由初始密钥扩展得到。算法中16字节的明文、密文和轮密钥都以一个4x4的矩阵表示。

AES 有五种加密模式:电码本模式(Electronic Codebook Book (ECB))、密码分组链接模式(Cipher Block Chaining (CBC))、计算器模式(Counter (CTR))、密码反馈模式(Cipher FeedBack (CFB))和输出反馈模式(Output FeedBack (OFB))

import (
    "bytes"
    "crypto/aes"
    "fmt"
    "crypto/cipher"
    "encoding/base64"
)

func main() {
    orig := "hello world"
    key := "123456781234567812345678"
    fmt.Println("原文:", orig)

    encryptCode := AesEncrypt(orig, key)
    fmt.Println("密文:" , encryptCode)

    decryptCode := AesDecrypt(encryptCode, key)
    fmt.Println("解密结果:", decryptCode)
}

func AesEncrypt(orig string, key string) string {
    // 转成字节数组
    origData := []byte(orig)
    k := []byte(key)

    // 分组秘钥
    block, _ := aes.NewCipher(k)
    // 获取秘钥块的长度
    blockSize := block.BlockSize()
    // 补全码
    origData = PKCS7Padding(origData, blockSize)
    // 加密模式
    blockMode := cipher.NewCBCEncrypter(block, k[:blockSize])
    // 创建数组
    cryted := make([]byte, len(origData))
    // 加密
    blockMode.CryptBlocks(cryted, origData)

    return base64.StdEncoding.EncodeToString(cryted)

}

func AesDecrypt(cryted string, key string) string {
    // 转成字节数组
    crytedByte, _ := base64.StdEncoding.DecodeString(cryted)
    k := []byte(key)

    // 分组秘钥
    block, _ := aes.NewCipher(k)
    // 获取秘钥块的长度
    blockSize := block.BlockSize()
    // 加密模式
    blockMode := cipher.NewCBCDecrypter(block, k[:blockSize])
    // 创建数组
    orig := make([]byte, len(crytedByte))
    // 解密
    blockMode.CryptBlocks(orig, crytedByte)
    // 去补全码
    orig = PKCS7UnPadding(orig)
    return string(orig)
}

//补码
func PKCS7Padding(ciphertext []byte, blocksize int) []byte {
    padding := blocksize - len(ciphertext)%blocksize
    padtext := bytes.Repeat([]byte{byte(padding)}, padding)
    return append(ciphertext, padtext...)
}

//去码
func PKCS7UnPadding(origData []byte) []byte {
    length := len(origData)
    unpadding := int(origData[length-1])
    return origData[:(length - unpadding)]
}

DES

DES是一种对称加密算法,又称为美国数据加密标准。DES加密时以64位分组对数据进行加密,加密和解密都使用的是同一个长度为64位的密钥,实际上只用到了其中的56位,密钥中的第8、16…64位用来作奇偶校验。DES有ECB(电子密码本)和CBC(加密块)等加密模式。

DES算法的安全性很高,目前除了穷举搜索破解外, 尚无更好的的办法来破解。其密钥长度越长,破解难度就越大。
填充和去填充函数。

func ZeroPadding(ciphertext []byte, blockSize int) []byte {
    padding := blockSize - len(ciphertext)%blockSize
    padtext := bytes.Repeat([]byte{0}, padding)
    return append(ciphertext, padtext...)
}

func ZeroUnPadding(origData []byte) []byte {
    return bytes.TrimFunc(origData,
        func(r rune) bool {
            return r == rune(0)
        })
}

加密。

func Encrypt(text string, key []byte) (string, error) {
    src := []byte(text)
    block, err := des.NewCipher(key)
    if err != nil {
        return "", err
    }
    bs := block.BlockSize()
    src = ZeroPadding(src, bs)
    if len(src)%bs != 0 {
        return "", errors.New("Need a multiple of the blocksize")
    }
    out := make([]byte, len(src))
    dst := out
    for len(src) > 0 {
        block.Encrypt(dst, src[:bs])
        src = src[bs:]
        dst = dst[bs:]
    }
    return hex.EncodeToString(out), nil
}

解密。

func Decrypt(decrypted string , key []byte) (string, error) {
    src, err := hex.DecodeString(decrypted)
    if err != nil {
        return "", err
    }
    block, err := des.NewCipher(key)
    if err != nil {
        return "", err
    }
    out := make([]byte, len(src))
    dst := out
    bs := block.BlockSize()
    if len(src)%bs != 0 {
        return "", errors.New("crypto/cipher: input not full blocks")
    }
    for len(src) > 0 {
        block.Decrypt(dst, src[:bs])
        src = src[bs:]
        dst = dst[bs:]
    }
    out = ZeroUnPadding(out)
    return string(out), nil
}

测试。在这里,DES中使用的密钥key只能为8位。

func main() {
    key := []byte("2fa6c1e9")
    str :="I love this beautiful world!"
    strEncrypted, err := Encrypt(str, key)
    if err != nil {
        log.Fatal(err)
    }
    fmt.Println("Encrypted:", strEncrypted)
    strDecrypted, err := Decrypt(strEncrypted, key)
    if err != nil {
        log.Fatal(err)
    }
    fmt.Println("Decrypted:", strDecrypted)
}
//Output:
//Encrypted: 5d2333b9fbbe5892379e6bcc25ffd1f3a51b6ffe4dc7af62beb28e1270d5daa1
//Decrypted: I love this beautiful world!

RSA

首先使用openssl生成公私钥,使用RSA的时候需要提供公钥和私钥 , 可以通过openss来生成对应的pem格式的公钥和私钥匙

import (
    "crypto/rand"
    "crypto/rsa"
    "crypto/x509"
    "encoding/base64"
    "encoding/pem"
    "errors"
    "fmt"
)

// 私钥生成
//openssl genrsa -out rsa_private_key.pem 1024
var privateKey = []byte(`
-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQDcGsUIIAINHfRTdMmgGwLrjzfMNSrtgIf4EGsNaYwmC1GjF/bM
h0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdTnCDPPZ7oV7p1B9Pud+6zPaco
qDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Zy682X1+R1lRK8D+vmQIDAQAB
AoGAeWAZvz1HZExca5k/hpbeqV+0+VtobMgwMs96+U53BpO/VRzl8Cu3CpNyb7HY
64L9YQ+J5QgpPhqkgIO0dMu/0RIXsmhvr2gcxmKObcqT3JQ6S4rjHTln49I2sYTz
7JEH4TcplKjSjHyq5MhHfA+CV2/AB2BO6G8limu7SheXuvECQQDwOpZrZDeTOOBk
z1vercawd+J9ll/FZYttnrWYTI1sSF1sNfZ7dUXPyYPQFZ0LQ1bhZGmWBZ6a6wd9
R+PKlmJvAkEA6o32c/WEXxW2zeh18sOO4wqUiBYq3L3hFObhcsUAY8jfykQefW8q
yPuuL02jLIajFWd0itjvIrzWnVmoUuXydwJAXGLrvllIVkIlah+lATprkypH3Gyc
YFnxCTNkOzIVoXMjGp6WMFylgIfLPZdSUiaPnxby1FNM7987fh7Lp/m12QJAK9iL
2JNtwkSR3p305oOuAz0oFORn8MnB+KFMRaMT9pNHWk0vke0lB1sc7ZTKyvkEJW0o
eQgic9DvIYzwDUcU8wJAIkKROzuzLi9AvLnLUrSdI6998lmeYO9x7pwZPukz3era
zncjRK3pbVkv0KrKfczuJiRlZ7dUzVO0b6QJr8TRAA==
-----END RSA PRIVATE KEY-----
`)

// 公钥: 根据私钥生成
//openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem
var publicKey = []byte(`
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDcGsUIIAINHfRTdMmgGwLrjzfM
NSrtgIf4EGsNaYwmC1GjF/bMh0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdT
nCDPPZ7oV7p1B9Pud+6zPacoqDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Z
y682X1+R1lRK8D+vmQIDAQAB
-----END PUBLIC KEY-----
`)

// 加密
func RsaEncrypt(origData []byte) ([]byte, error) {
    //解密pem格式的公钥
    block, _ := pem.Decode(publicKey)
    if block == nil {
        return nil, errors.New("public key error")
    }
    // 解析公钥
    pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
    if err != nil {
        return nil, err
    }
    // 类型断言
    pub := pubInterface.(*rsa.PublicKey)
    //加密
    return rsa.EncryptPKCS1v15(rand.Reader, pub, origData)
}

// 解密
func RsaDecrypt(ciphertext []byte) ([]byte, error) {
    //解密
    block, _ := pem.Decode(privateKey)
    if block == nil {
        return nil, errors.New("private key error!")
    }
    //解析PKCS1格式的私钥
    priv, err := x509.ParsePKCS1PrivateKey(block.Bytes)
    if err != nil {
        return nil, err
    }
    // 解密
    return rsa.DecryptPKCS1v15(rand.Reader, priv, ciphertext)
}
func main() {
    data, _ := RsaEncrypt([]byte("hello world"))
    fmt.Println(base64.StdEncoding.EncodeToString(data))
    origData, _ := RsaDecrypt(data)
    fmt.Println(string(origData))
} 

MD5

MD5的全称是Message-DigestAlgorithm 5,它可以把一个任意长度的字节数组转换成一个定长的整数,并且这种转换是不可逆的。对于任意长度的数据,转换后的MD5值长度是固定的,而且MD5的转换操作很容易,只要原数据有一点点改动,转换后结果就会有很大的差异。正是由于MD5算法的这些特性,它经常用于对于一段信息产生信息摘要,以防止其被篡改。其还广泛就于操作系统的登录过程中的安全验证,比如Unix操作系统的密码就是经过MD5加密后存储到文件系统中,当用户登录时输入密码后, 对用户输入的数据经过MD5加密后与原来存储的密文信息比对,如果相同说明密码正确,否则输入的密码就是错误的。
MD5以512位为一个计算单位对数据进行分组,每一分组又被划分为16个32位的小组,经过一系列处理后,输出4个32位的小组,最后组成一个128位的哈希值。对处理的数据进行512求余得到N和一个余数,如果余数不为448,填充1和若干个0直到448位为止,最后再加上一个64位用来保存数据的长度,这样经过预处理后,数据变成(N+1)x 512位。

加密。Encode 函数用来加密数据,Check函数传入一个未加密的字符串和与加密后的数据,进行对比,如果正确就返回true。

func Check(content, encrypted string) bool {
    return strings.EqualFold(Encode(content), encrypted)
}
func Encode(data string) string {
    h := md5.New()
    h.Write([]byte(data))
    return hex.EncodeToString(h.Sum(nil))
}

测试。

func main() {
     strTest := "I love this beautiful world!"
    strEncrypted := "98b4fc4538115c4980a8b859ff3d27e1"
    fmt.Println(Check(strTest, strEncrypted))
}
//Output:
//true

Sha1

package main

import (
    "crypto/sha1"
     "fmt"
)
func main() {
   s := "sha1 this string"
   //产生一个散列值得方式是 sha1.New(),sha1.Write(bytes),然后 sha1.Sum([]byte{})。这里我们从一个新的散列开始。
   h := sha1.New()
   //写入要处理的字节。如果是一个字符串,需要使用[]byte(s) 来强制转换成字节数组。
   h.Write([]byte(s))
   //这个用来得到最终的散列值的字符切片。Sum 的参数可以用来都现有的字符切片追加额外的字节切片:一般不需要要。
   bs := h.Sum(nil)
   //SHA1 值经常以 16 进制输出,例如在 git commit 中。使用%x 来将散列结果格式化为 16 进制字符串。
   fmt.Println(s)
   fmt.Printf("%x\n", bs)
}

Base64

Base64是一种任意二进制到文本字符串的编码方法,常用于在URL、Cookie、网页中传输少量二进制数据。

首先使用Base64编码需要一个含有64个字符的表,这个表由大小写字母、数字、+和/组成。采用Base64编码处理数据时,会把每三个字节共24位作为一个处理单元,再分为四组,每组6位,查表后获得相应的字符即编码后的字符串。编码后的字符串长32位,这样,经Base64编码后,原字符串增长1/3。如果要编码的数据不是3的倍数,最后会剩下一到两个字节,Base64编码中会采用\x00在处理单元后补全,编码后的字符串最后会加上一到两个 = 表示补了几个字节。

const (
   base64Table = "IJjkKLMNO567PQX12RVW3YZaDEFGbcdefghiABCHlSTUmnopqrxyz04stuvw89+/"

)

var coder = base64.NewEncoding(base64Table)

func Base64Encode(src []byte) []byte {         //编码
   return []byte(coder.EncodeToString(src))
}

func Base64Decode(src []byte) ([]byte, error) {   //解码
   return coder.DecodeString(string(src))
}

到此这篇关于golang常用加密解密算法总结(AES、DES、RSA、Sha1MD5)的文章就介绍到这了,更多相关golang 加密解密内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Golang加密解密之RSA(附带php)

    RSA加密算法简史 RSA是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的.当时他们三人都在麻省理工学院工作.RSA就是他们三人姓氏开头字母拼在一起组成的. RSA加密算法原理 学过算法的朋友都知道,计算机中的算法其实就是数学运算.所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识.我们就从数学知识开始讲解. 必备数学知识 RSA加密算法中,只用到素数.互质数.指数运算.模运算等

  • golang常用加密解密算法总结(AES、DES、RSA、Sha1、MD5)

    目录 关于加密解密 AES DES RSA MD5 Sha1 Base64 在项目开发过程中,当操作一些用户的隐私信息,诸如密码.帐户密钥等数据时,往往需要加密后可以在网上传输.这时,需要一些高效地.简单易用的加密算法加密数据,然后把加密后的数据存入数据库或进行其他操作:当需要读取数据时,把加密后的数据取出来,再通过算法解密. 关于加密解密 当前我们项目中常用的加解密的方式无非三种. 对称加密, 加解密都使用的是同一个密钥, 其中的代表就是AES.DES 非对加解密, 加解密使用不同的密钥, 其

  • PHP实现的简单AES加密解密算法实例

    本文实例讲述了PHP简单AES加密解密算法.分享给大家供大家参考,具体如下: /* * 实现AES加密 * $str : 要加密的字符串 * $keys : 加密密钥 * $iv : 加密向量 * $cipher_alg : 加密方式 */ function ecryptdString($str,$keys="6461772803150152",$iv="8105547186756005",$cipher_alg=MCRYPT_RIJNDAEL_128){ $enc

  • Go 加密解密算法小结

    目录 前言 md5 hmac sha1 AES ECB模式 CBC模式 CRT模式 CFB模式 OFB模式 RSA加密 参考: 前言 加密解密在实际开发中应用比较广泛,常用加解密分为:“对称式”.“非对称式”和”数字签名“. 对称式:对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法.具体算法主要有DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法. 非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密.具体算法主要有RSA.E

  • php实现的三个常用加密解密功能函数示例

    本文实例讲述了php实现的三个常用加密解密功能函数.分享给大家供大家参考,具体如下: 算法一: //加密函数 function lock_url($txt,$key='www.jb51.net') { $chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-=+"; $nh = rand(0,64); $ch = $chars[$nh]; $mdKey = md5($key.$ch); $mdKe

  • Java中常用加密/解密方法详解

    安全问题已经成为一个越来越重要的问题,在Java中如何对重要数据进行加密解密是本文的主要内容. 一.常用的加密/解密算法 1.Base64 严格来说Base64并不是一种加密/解密算法,而是一种编码方式.Base64不生成密钥,通过Base64编码后的密文就可以直接"翻译"为明文,但是可以通过向明文中添加混淆字符来达到加密的效果. 2.DES DES是一种基于56位密钥的对称算法,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来.现在DE

  • Java实现的RSA加密解密算法示例

    本文实例讲述了Java实现的RSA加密解密算法.分享给大家供大家参考,具体如下: import java.awt.AlphaComposite; import java.awt.Color; import java.awt.Font; import java.awt.Graphics2D; import java.awt.Image; import java.awt.RenderingHints; import java.awt.image.BufferedImage; import java.

  • JS实现的3des+base64加密解密算法完整示例

    本文实例讲述了JS实现的3des+base64加密解密算法.分享给大家供大家参考,具体如下: 1. index.html: <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>www.jb51.net BASE64编码</title> <meta http-equiv="Content-Type" content="text/html; c

  • PHP实现的XXTEA加密解密算法示例

    本文实例讲述了PHP实现的XXTEA加密解密算法.分享给大家供大家参考,具体如下: <?php /** * Xxtea 加密实现类 */ class xxtea { private function long2str($v, $w) { $len = count($v); $n = ($len -1) << 2; if ($w) { $m = $v[$len -1]; if (($m < $n -3) || ($m > $n)) return false; $n = $m;

  • php的RSA加密解密算法原理与用法分析

    本文实例讲述了php的RSA加密解密算法原理与用法.分享给大家供大家参考,具体如下: 最近因为工作的需要,要倒腾支付宝支付相关的知识,因为支付宝应用了RSA加密机制,个人对此并不了解,所以在这里写下一篇总结. 1.生成公钥和私钥 要应用RSA算法,必须先生成公钥和私钥,公钥和私钥的生成可以借助openssl工具. 本次测验是在windows下进行的,可以到以下的地址下载windows安装包:http://gnuwin32.sourceforge.net/packages/openssl.htm,

  • java实现Base64加密解密算法

    Base64是网络上最常见的用于传输8Bit字节代码的编码方式之一,大家可以查看RFC2045-RFC2049,上面有MIME的详细规范.Base64编码可用于在HTTP环境下传递较长的标识信息.例如,在Java Persistence系统Hibernate中,就采用了Base64来将一个较长的唯一标识符(一般为128-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数.在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式.

随机推荐