使用Lvs+Nginx集群搭建高并发架构的实现示例

目录
  • 1. Lvs介绍
  • 2. Lvs 负载均衡模式
    • 2.1 NAT
    • 2.2 TUN
    • 2.3 DR模式
  • 3. Lvs DR模式配置
    • 3.1 Vip配置
    • 3.2 LVS集群管理工具安装
    • 3.3 地址解析协议
    • 3.4 集群配置

高并发站点不仅要考虑网站后端服务的稳定,还需要考虑服务能否接入巨大流量、承受巨大流量,如下图:

1:流量接入,可以采用Lvs+Nginx集群,这种方式能接入的QPS能高达数百万

2:通过Lvs实现Nginx集群,Nginx+Tomcat实现后端服务集群,完成了从接入层流量处理到后端服务集群高并发处理

1. Lvs介绍

LVS(Linux Virtual Server),即Linux虚拟服务器。它用于多服务器的负载均衡,工作在网络四层,可以实现高性能,高可用的服务器集群技术,它稳定可靠,即使在集群的服务器中某台服务器无法正常工作,也不影响整体效果。是基于TCP/IP做的路由和转发,稳定性和效率极高。

一个LVS集群往往包含以下角色:

1:DS:Director Server。虚拟服务,负责调度

2:RS:Real Server。后端真实的工作服务器。

3:VIP:向外部直接面向用户请求,作为用户请求的目标的IP地址

4:DIP:Director Server IP,DS的IP

5:RIP:Real Server IP,后端服务器的IP地址

6:CIP:Client IP,访问客户端的IP地址

2. Lvs 负载均衡模式

lvs提供了3种负载均衡模式,每种负载均衡模式适用的场景有差异,我们来讲解一下这三种负载均衡模式。

2.1 NAT

用户的请求到分发器后,通过预设的iptables规则,把请求的数据包转发到后端的RS上去。RS需要设定网关为分发器的内网IP。用户请求的数据包和返回给用户的数据包全部经过分发器,所以分发器称为瓶颈。在NAT模式中,只需要分发器有公网IP即可,所以比较节省公网IP资源。

2.2 TUN

这种模式需要有一个公共的IP配置在分发器和所有的RS上,我们把它叫做VIP。客户端请求的目标IP为VIP,分发器接收到请求数据包后,会对数据包做一个加工,会把目标IP改为RS的IP,这样数据包就到了RS上。RS接收数据包后,会还原原始数据包,这样目标IP为VIP,因为所有RS上配置了这个VIP,所以他会认为是它自己。

2.3 DR模式

和IP Tunnel较为相似,不同的是,它会把数据包的MAC地址修改为RS的MAC地址。真实服务器将响应直接返回给客户。

这种方式没有IP隧道的开销,对集群中的真实服务期也没有必须支持IP隧道协议的要求,但是要求调度器与真实服务器都有一块网卡连在同一物理网段上。

3. Lvs DR模式配置

综合上面分析,我们可以得出结论,DR模式性能效率比较高,安全性很高,因此一般公司都推荐使用DR模式。我们这里也配置DR模式实现Lvs+Nginx集群。

我们准备了3台机器:首先确保三台机器都安装了Nginx。

1:192.168.183.133	(DS)		192.168.183.150   对外提供服务
2:192.168.183.134	(RS)		192.168.183.150   真实服务处理业务流程
3:192.168.183.135	(RS)		192.168.183.150   真实服务处理业务流程

VIP:192.168.183.150

3.1 Vip配置

关闭网络配置管理器(每台机器都要做)

systemctl stop NetworkManager
systemctl disable NetworkManager

配置虚拟IP(VIP 192.168.183.133中配置)

/etc/sysconfig/network-scripts创建文件ifcfg-ens33:1,内容如下:

BOOTPROTO=static
DEVICE=ens33:1
ONBOOT=yes
IPADDR=192.168.183.150
NETMASK=255.255.255.0

重启网络服务:

service network restart

我们可以看到在原来的网卡上面添加了一个虚拟IP 150。

同时需要对192.168.183.134192.168.183.135构建虚拟机IP,但只是用于返回数据,而不能被用户访问到,这时候需要操作ifcfg-lo

IPADDR=127.0.0.1,这里127.0.0.1属于本地回环地址,不属于任何一个有类别地址类。它代表设备的本地虚拟接口,所以默认被看作是永远不会宕掉的接口。

NETMASK=255.255.255.255

192.168.183.134
ifcfg-lo拷贝一份ifcfg-lo:1,并修改ifcfg-lo:1配置,内容如下:

刷新lo:

ifup lo

查看IP可以发现lo下多了150ip。

192.168.100.133知行和上面相同的操作。

3.2 LVS集群管理工具安装

ipvsadm用于对lvs集群进行管理,需要手动安装。DS安装即可。

安装命令:

yum install ipvsadm

版本查看:

ipvsadm -Ln

效果如下:

3.3 地址解析协议

192.168.183.134192.168.183.135中操作。

arp_ignore和arp_announce参数都和ARP协议相关,主要用于控制系统返回arp响应和发送arp请求时的动作。这两个参数很重要,特别是在LVS的DR场景下,它们的配置直接影响到DR转发是否正常。

arp-ignore:arp_ignore参数的作用是控制系统在收到外部的arp请求时,是否要返回arp响应(0~8,2-8用的很少)

配置文件:/etc/sysctl.conf,将如下文件拷贝进去:

net.ipv4.conf.all.arp_ignore = 1
net.ipv4.conf.default.arp_ignore = 1
net.ipv4.conf.lo.arp_ignore = 1
net.ipv4.conf.all.arp_announce = 2
net.ipv4.conf.default.arp_announce = 2
net.ipv4.conf.lo.arp_announce = 2

刷新配置:

sysctl -p

添加路由:此时如果无法识别route,需要安装相关工具yum install net-tools

route add -host 192.168.183.150 dev lo:1

添加了一个host地址,目的是用于接收数据报文,接收到了数据报文后会交给lo:1处理。(防止关机失效,需要将上述命令添加到/etc/rc.local中)

添加完host后,可以查看一下:route -n,能明显看到效果。

上述配置我们同样要在192.168.183.135中配置。

3.4 集群配置

ipvsadm命令讲解:

ipvsadm -A:用于创建集群
ipvsadm -E:用于修改集群
ipvsadm -D:用于删除集群
ipvsadm -C:用于清除集群数据
ipvsadm -R:用于重置集群配置规则
ipvsadm -S:用于保存修改的集群规则
ipvsadm -a:用于添加一个rs节点
ipvsadm -e:用于修改一个rs节点
ipvsadm -d:用于删除一个rs节点

添加集群TCP服务地址:(外部请求由该配置指定的VIP处理)

ipvsadm -A -t 192.168.183.150:80 -s rr

参数说明:

  • -A:添加集群配置
  • -t:TCP请求地址(VIP)
  • -s:负载均衡算法

负载均衡算法:

算法 说明
rr 轮询算法,它将请求依次分配给不同的rs节点,也就是RS节点中均摊分配。这种算法简单,但只适合于RS节点处理性能差不多的情况
wrr 加权轮训调度,它将依据不同RS的权值分配任务。权值较高的RS将优先获得任务,并且分配到的连接数将比权值低的RS更多。相同权值的RS得到相同数目的连接数。
Wlc 加权最小连接数调度,假设各台RS的全职依次为Wi,当前tcp连接数依次为Ti,依次去Ti/Wi为最小的RS作为下一个分配的RS
Dh 目的地址哈希调度(destination hashing)以目的地址为关键字查找一个静态hash表来获得需要的RS
SH 源地址哈希调度(source hashing)以源地址为关键字查找一个静态hash表来获得需要的RS
Lc 最小连接数调度(least-connection),IPVS表存储了所有活动的连接。LB会比较将连接请求发送到当前连接最少的RS.
Lblc 基于地址的最小连接数调度(locality-based least-connection):将来自同一个目的地址的请求分配给同一台RS,此时这台服务器是尚未满负荷的。否则就将这个请求分配给连接数最小的RS,并以它作为下一次分配的首先考虑。

DS中配置rs(2个)节点:

ipvsadm -a -t 192.168.183.150:80 -r 192.168.183.134:80 -g
ipvsadm -a -t 192.168.183.150:80 -r 192.168.183.135:80 -g

参数说明:

  • -a:给集群添加一个节点
  • -t:指定VIP地址
  • -r:指定real server地址
  • -g:表示LVS的模式为dr模式

添加了节点后,我们通过ipvsadm -Ln查看,可以看到多了2个节点。

此时集群列表中客户端请求数据和TCP通信数据会持久化保存,为了更好看到效果,我们可以把时间设置成2秒保存,如下命令:

ipvsadm --set 2 2 2

此时我们请求http://192.168.183.150/测试

可以发现请求会在两台Nginx轮询切换。

到此这篇关于使用Lvs+Nginx集群搭建高并发架构的实现示例的文章就介绍到这了,更多相关Lvs Nginx集群搭建高并发内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 浅谈Nginx10m+高并发内核优化详解

    何为高并发 默认的Linux内核参数考虑的是最通用场景,不符合用于支持高并发访问的Web服务器,所以需要修改Linux内核参数,这样可以让Nginx拥有更高的性能: 在优化内核时,可以做的事情很多,不过,我们通常会根据业务特点来进行调整,当Nginx作为静态web内容服务器.反向代理或者提供压缩服务器的服务器时,期内核参数的调整都是不同的,这里针对最通用的.使Nginx支持更多并发请求的TCP网络参数做简单的配置: 这些需要修改/etc/sysctl.conf来更改内核参数. 配置方法 配置详析

  • 详解nginx高并发场景下的优化

    在日常的运维工作中,经常会用到nginx服务,也时常会碰到nginx因高并发导致的性能瓶颈问题.今天这里简单梳理下nginx性能优化的配置(仅仅依据本人的实战经验而述,如有不妥,敬请指出~) 一.这里的优化主要是指对nginx的配置优化,一般来说nginx配置文件中对优化比较有作用的主要有以下几项: 1)nginx进程数,建议按照cpu数目来指定,一般跟cpu核数相同或为它的倍数. worker_processes 8; 2)为每个进程分配cpu,上例中将8个进程分配到8个cpu,当然可以写多个

  • 总结高并发下Nginx性能如何优化

    目录 特点 优势 安装和命令 配置文件 代理模式和配置反向代理 正向代理(forward proxy) : 反向代理(reverse proxy)︰ 透明代理∶ 动静分离 日志管理 日志格式 日志切割 高并发架构分析 什么是高并发? 如何提升系统的并发能力? 三种方式实现 限制连接流 限制请求流(限速) 后台服务限制 安全配置 Nginx优化 Nginx压缩 我们终将在,没有黑暗的地方相见. ~乔治<1984> Nginx同Apache一样都是一种WEB服务器.基于REST架构风格,以统一资源

  • Nginx+Lua+Redis构建高并发Web应用

    本文介绍如何用Nginx+Lua+Redis来构建高并发Web应用,Curl请求Nginx,Nginx通过Lua查询Redis,返回json数据. 一.安装1.安装lua-redis-parser 复制代码 代码如下: #git clone https://github.com/agentzh/lua-redis-parser.git #export LUA_INCLUDE_DIR=/usr/include/lua5.1 #make CC=gcc #make install CC=gcc 2.安

  • 使用Lvs+Nginx集群搭建高并发架构的实现示例

    目录 1. Lvs介绍 2. Lvs 负载均衡模式 2.1 NAT 2.2 TUN 2.3 DR模式 3. Lvs DR模式配置 3.1 Vip配置 3.2 LVS集群管理工具安装 3.3 地址解析协议 3.4 集群配置 高并发站点不仅要考虑网站后端服务的稳定,还需要考虑服务能否接入巨大流量.承受巨大流量,如下图: 1:流量接入,可以采用Lvs+Nginx集群,这种方式能接入的QPS能高达数百万 2:通过Lvs实现Nginx集群,Nginx+Tomcat实现后端服务集群,完成了从接入层流量处理到

  • fastdfs+nginx集群搭建的实现

    一.简介fastdfs 1.什么是fastdfs fastdfs是一个轻量级的开源分布式文件系统: fastdfs主要解决了大容量的文件存储和高并发访问的问题,文件存取时实现了负载均衡: fastdfs实现了软件方式的RAID,可以使用廉价的IDE硬盘进行存储支持存储服务器在线扩容支持相同内容的文件只保存一份,节约磁盘空间: fastdfs只能通过Client API访问,不支持POSIX访问方式: fastdfs特别适合大中型网站使用,用来存储资源文件(如:图片.文档.音频.视频等等). 2.

  • Nginx+PHP(FastCGI)搭建高并发WEB服务器(自动安装脚本)第二版

    本文是依照张宴的 Nginx 0.7.x + PHP 5.2.10(FastCGI)搭建胜过Apache十倍的Web服务器(第5版) 编写 原文地址 http://blog.s135.com/nginx_php_v5/ 因为编译过程和等待时间繁琐,于是就自己写了个全自动安装的shell脚本,此脚本可以随意修改,转载请注明出处. 这篇文章为这个系列的第二版,在第一版的基础上加入 1.日志切割 2.智能选择yum或者rpm安装 下载地址 注意:如果不能使用yum源,请放入系统光盘,单张dvd的,如果

  • mongodb3.4集群搭建实战之高可用的分片+副本集

    前言 最近因为工作的原因,在学习使用mongodb数据库,mongodb是最常用的nodql数据库,在数据库排名中已经上升到了前六.这篇文章介绍如何搭建高可用的mongodb(分片+副本)集群,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: 在搭建集群之前,需要首先了解几个概念:路由,分片.副本集.配置服务器等. 相关概念 先来看一张图: 从图中可以看到有四个组件:mongos.config server.shard.replica set. mongos,数据库集群请求的入口,

  • Redis5之后版本的高可用集群搭建的实现

    一.安装redis 1.安装gcc yum install gcc 2.下载redis-5.0.8.tar.gz 3.把下载好的redis-5.0.8.tar.gz放在/gyu/software文件夹下,并解压 > tar xzf redis-5.0.8.tar.gz > cd redis-5.0.8 4.进入到解压好的redis-5.0.8目录下,进行编译与安装 > make & make install 5.启动并指定配置文件 > src/redis-server re

  • 详解MySQL集群搭建

    概述 MySQL Cluster 是MySQL 适合于分布式计算环境的高实用.可拓展.高性能.高冗余版本,其研发设计的初衷就是要满足许多行业里的最严酷应用要求,这些应用中经常要求数据库运行的可靠性要达到99.999%.MySQL Cluster允许在无共享的系统中部署"内存中"数据库集群,通过无共享体系结构,系统能够使用廉价的硬件,而且对软硬件无特殊要求.此外,由于每个组件有自己的内存和磁盘,不存在单点故障. 实际上,MySQL集群是把一个叫做NDB的内存集群存储引擎集成与标准的MyS

  • Nacos集群搭建过程详解

    目录 1.集群结构图 2.搭建集群 2.1.初始化数据库 2.2.下载nacos 2.3.配置Nacos 2.4.启动 2.5.nginx反向代理 2.6.优化 1.集群结构图 官方给出的Nacos集群图: 其中包含3个nacos节点,然后一个负载均衡器代理3个Nacos.这里负载均衡器可以使用nginx. 我们计划的集群结构: 三个nacos节点的地址: 节点 ip port nacos1 192.168.150.1 8845 nacos2 192.168.150.1 8846 nacos3

  • redis 分片集群搭建与使用教程

    目录 前言 搭建集群架构图 前置准备 搭建步骤 创建集群 Redis散列插槽说明 集群伸缩(添加节点) 故障转移 使用redistemplate访问分片集群 前言 redis可以说在实际项目开发中使用的非常频繁,在redis常用集群中,我们聊到了redis常用的几种集群方案,不同的集群对应着不同的场景,并且详细说明了各种集群的优劣,本篇将以redis 分片集群为切入点,从redis 分片集群的搭建开始,详细说说redis 分片集群相关的技术点: 单点故障: 单机写(高并发写)瓶颈: 单机存储数据

  • redis 哨兵集群搭建的实现

    目录 前言 为什么需要哨兵集群 搭建前准备 搭建步骤 集群测试 前言 在上一篇,我们了解了redis 复制集群的完整的搭建流程,本篇来分享一下如何搭建 redis 哨兵集群. 为什么需要哨兵集群 redis哨兵集群要解决的问题是什么呢?搞清楚这个问题之后,就知道为什么需要哨兵集群了.我们知道,redis复制集群解决的是,高并发情况下,单节点的读性能瓶颈以及单节点问题: 但是复制集群的很明显的问题就是,当主节点挂掉后,集群将无法提供写业务,如果要恢复集群,则需要人工介入,这个必定会丢失数据不说,而

  • Redis集群搭建全记录

    Redis集群是一个提供在多个Redis节点间共享数据的程序集. Redis集群中不支持处理多个keys的命令. Redis集群通过分区来提供一定程度的可用性.在某个节点宕机或者不可用的时候可以继续处理命令. Redis集群数据分片 在Redis集群中,使用数据分片(sharding)而不是一致性hash(consistency hashing)来实现,一个Redis集群包含16384个哈希槽(hash slot),数据库中的每个键都存在这些哈希槽中的某一个,通过CRC16校验后对16384取模

随机推荐