快速学习六大排序算法

目录
  • 1. 插入排序
  • 2.希尔排序
  • 3.选择排序
  • 4.冒泡排序
  • 5.堆排序
  • 6.快速排序
    • 6.1 hoare版本(左右指针法)
    • 6.2 挖坑法
    • 6.3 前后指针法

1. 插入排序

步骤:

1.从第一个元素开始,该元素可以认为已经被排序
2.取下一个元素tem,从已排序的元素序列从后往前扫描
3.如果该元素大于tem,则将该元素移到下一位
4.重复步骤3,直到找到已排序元素中小于等于tem的元素
5.tem插入到该元素的后面,如果已排序所有元素都大于tem,则将tem插入到下标为0的位置
6.重复步骤2~5

动图演示如下:

思路:
  在待排序的元素中,假设前n-1个元素已有序,现将第n个元素插入到前面已经排好的序列中,使得前n个元素有序。按照此法对所有元素进行插入,直到整个序列有序。
  但我们并不能确定待排元素中究竟哪一部分是有序的,所以我们一开始只能认为第一个元素是有序的,依次将其后面的元素插入到这个有序序列中来,直到整个序列有序为止。

代码如下:

void InsertSort(int* arr, int n)
{
	for (int i = 0; i < n - 1; ++i)
	{
		//记录有序序列最后一个元素的下标
		int end = i;
		//待插入的元素
		int tem = arr[end + 1];
		//单趟排
		while (end >= 0)
		{
			//比插入的数大就向后移
			if (tem < arr[end])
			{
				arr[end + 1] = arr[end];
				end--;
			}
			//比插入的数小,跳出循环
			else
			{
				break;
			}
		}
		//tem放到比插入的数小的数的后面
		arr[end  + 1] = tem;
		//代码执行到此位置有两种情况:
		//1.待插入元素找到应插入位置(break跳出循环到此)
		//2.待插入元素比当前有序序列中的所有元素都小(while循环结束后到此)
	}
}

时间复杂度:最坏情况下为O(N*N),此时待排序列为逆序,或者说接近逆序
      最好情况下为O(N),此时待排序列为升序,或者说接近升序。
空间复杂度:O(1)

2.希尔排序

步骤:

1.先选定一个小于N的整数gap作为第一增量,然后将所有距离为gap的元素分在同一组,并对每一组的元素进行直接插入排序。然后再取一个比第一增量小的整数作为第二增量,重复上述操作…
2.当增量的大小减到1时,就相当于整个序列被分到一组,进行一次直接插入排序,排序完成。
动图如下:

思路:
希尔排序,先将待排序列进行预排序,使待排序列接近有序,然后再对该序列进行一次插入排序,此时插入排序的时间复杂度为O(N),

代码如下:

//希尔排序
void ShellSort(int* arr, int n)
{
	int gap = n;
	while (gap>1)
	{
		//每次对gap折半操作
		gap = gap / 2;
		//单趟排序
		for (int i = 0; i < n - gap; ++i)
		{
			int end = i;
			int tem = arr[end + gap];
			while (end >= 0)
			{
				if (tem < arr[end])
				{
					arr[end + gap] = arr[end];
					end -= gap;
				}
				else
				{
					break;
				}
			}
			arr[end + gap] = tem;
		}
	}
}

时间复杂度平均:O(N^1.3)
空间复杂度:O(1)

3.选择排序

思路:
每次从待排序列中选出一个最小值,然后放在序列的起始位置,直到全部待排数据排完即可。
实际上,我们可以一趟选出两个值,一个最大值一个最小值,然后将其放在序列开头和末尾,这样可以使选择排序的效率快一倍。

动图如下:

代码如下:

//选择排序
void swap(int* a, int* b)
{
	int tem = *a;
	*a = *b;
	*b = tem;
}
void SelectSort(int* arr, int n)
{
	//保存参与单趟排序的第一个数和最后一个数的下标
	int begin = 0, end = n - 1;
	while (begin < end)
	{
		//保存最大值的下标
		int maxi = begin;
		//保存最小值的下标
		int mini = begin;
		//找出最大值和最小值的下标
		for (int i = begin; i <= end; ++i)
		{
			if (arr[i] < arr[mini])
			{
				mini = i;
			}
			if (arr[i] > arr[maxi])
			{
				maxi = i;
			}
		}
		//最小值放在序列开头
		swap(&arr[mini], &arr[begin]);
		//防止最大的数在begin位置被换走
		if (begin == maxi)
		{
			maxi = mini;
		}
		//最大值放在序列结尾
		swap(&arr[maxi], &arr[end]);
		++begin;
		--end;
	}
}

时间复杂度:最坏情况:O(N^2)
      最好情况:O(N^2)
空间复杂度:O(1)

4.冒泡排序

思路:
左边大于右边交换一趟排下来最大的在右边

动图如下:

代码如下:

//冒泡排序
void BubbleSort(int* arr, int n)
{
	int end = n;
	while (end)
	{
		int flag = 0;
		for (int i = 1; i < end; ++i)
		{
			if (arr[i - 1] > arr[i])
			{
				int tem = arr[i];
				arr[i] = arr[i - 1];
				arr[i - 1] = tem;
				flag = 1;
			}
		}
		if (flag == 0)
		{
			break;
		}
		--end;
	}
}

时间复杂度:最坏情况:O(N^2)
      最好情况:O(N)
空间复杂度:O(1)

5.堆排序

堆排可看之间这篇博文----->[堆排]

6.快速排序

6.1 hoare版本(左右指针法)

思路:
1、选出一个key,一般是最左边或是最右边的。
2、定义一个begin和一个end,begin从左向右走,end从右向左走。(需要注意的是:若选择最左边的数据作为key,则需要end先走;若选择最右边的数据作为key,则需要bengin先走)。
3、在走的过程中,若end遇到小于key的数,则停下,begin开始走,直到begin遇到一个大于key的数时,将begin和right的内容交换,end再次开始走,如此进行下去,直到begin和end最终相遇,此时将相遇点的内容与key交换即可。(选取最左边的值作为key)
4.此时key的左边都是小于key的数,key的右边都是大于key的数
5.将key的左序列和右序列再次进行这种单趟排序,如此反复操作下去,直到左右序列只有一个数据,或是左右序列不存在时,便停止操作,此时此部分已有序

单趟动图如下:

代码如下:

//快速排序   hoare版本(左右指针法)
void QuickSort(int* arr, int begin, int end)
{
	//只有一个数或区间不存在
	if (begin >= end)
		return;
	int left = begin;
	int right = end;
	//选左边为key
	int keyi = begin;
	while (begin < end)
	{
		//右边选小   等号防止和key值相等    防止顺序begin和end越界
		while (arr[end] >= arr[keyi] && begin < end)
		{
			--end;
		}
		//左边选大
		while (arr[begin] <= arr[keyi] && begin < end)
		{
			++begin;
		}
		//小的换到右边,大的换到左边
		swap(&arr[begin], &arr[end]);
	}
	swap(&arr[keyi], &arr[end]);
	keyi = end;
	//[left,keyi-1]keyi[keyi+1,right]
	QuickSort(arr, left, keyi - 1);
	QuickSort(arr,keyi + 1,right);
}

时间复杂度:

快速排序的过程类似于二叉树其高度为logN,每层约有N个数,如下图所示:

6.2 挖坑法

思路:
挖坑法思路与hoare版本(左右指针法)思路类似
1.选出一个数据(一般是最左边或是最右边的)存放在key变量中,在该数据位置形成一个坑
2、还是定义一个L和一个R,L从左向右走,R从右向左走。(若在最左边挖坑,则需要R先走;若在最右边挖坑,则需要L先走)

后面的思路与hoare版本(左右指针法)思路类似在此处就不说了

单趟动图如下:

代码如下:

//快速排序法  挖坑法
void QuickSort1(int* arr, int begin, int end)
{
	if (begin >= end)
		return;
	int left = begin,right = end;
	int key = arr[begin];
	while (begin < end)
	{
		//找小
		while (arr[end] >= key && begin < end)
		{
			--end;
		}
		//小的放到左边的坑里
		arr[begin] = arr[end];
		//找大
		while (arr[begin] <= key && begin < end)
		{
			++begin;
		}
		//大的放到右边的坑里
		arr[end] = arr[begin];
	}
	arr[begin] = key;
	int keyi = begin;
	//[left,keyi-1]keyi[keyi+1,right]
	QuickSort1(arr, left, keyi - 1);
	QuickSort1(arr, keyi + 1, right);
}

6.3 前后指针法

思路:
1、选出一个key,一般是最左边或是最右边的。
2、起始时,prev指针指向序列开头,cur指针指向prev+1。
3、若cur指向的内容小于key,则prev先向后移动一位,然后交换prev和cur指针指向的内容,然后cur指针++;若cur指向的内容大于key,则cur指针直接++。如此进行下去,直到cur到达end位置,此时将key和++prev指针指向的内容交换即可。

经过一次单趟排序,最终也能使得key左边的数据全部都小于key,key右边的数据全部都大于key。

然后也还是将key的左序列和右序列再次进行这种单趟排序,如此反复操作下去,直到左右序列只有一个数据,或是左右序列不存在时,便停止操作

//快速排序法  前后指针版本
void QuickSort2(int* arr, int begin, int end)
{
	if (begin >= end)
		return;
	int cur = begin, prev = begin - 1;
	int keyi = end;
	while (cur != keyi)
	{
		if (arr[cur] < arr[keyi] && ++prev != cur)
		{
			swap(&arr[cur], &arr[prev]);
		}
		++cur;
	}
	swap(&arr[++prev],&arr[keyi]);
	keyi = prev;
	//[begin,keyi -1]keyi[keyi+1,end]
	QuickSort2(arr, begin, keyi - 1);
	QuickSort2(arr, keyi + 1, end);

}

以上就是快速学习六大排序算法的详细内容,更多关于六大排序算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • JAVA十大排序算法之希尔排序详解

    目录 希尔排序 代码实现 时间复杂度 算法稳定性 总结 希尔排序 一种基于插入排序的快速的排序算法.简单插入排序对于大规模乱序数组很慢,因为元素只能一点一点地从数组的一端移动到另一端.例如,如果主键最小的元素正好在数组的尽头,要将它挪到正确的位置就需要n-1次移动. 希尔排序为了加快速度简单地改进了插入排序,也称为缩小增量排序. 希尔排序是把待排序数组按一定的数量分组,对每组使用直接插入排序算法排序:然后缩小数量继续分组排序,随着数量逐渐减少,每组包含的元素越来越多,当数量减至 1 时,整个数组

  • JAVA十大排序算法之堆排序详解

    目录 堆排序 知识补充 二叉树 满二叉树 完全二叉树 二叉堆 代码实现 时间复杂度 算法稳定性 思考 总结 堆排序 这里的堆并不是JVM中堆栈的堆,而是一种特殊的二叉树,通常也叫作二叉堆.它具有以下特点: 它是完全二叉树 堆中某个结点的值总是不大于或不小于其父结点的值 知识补充 二叉树 树中节点的子节点不超过2的有序树 满二叉树 二叉树中除了叶子节点,每个节点的子节点都为2,则此二叉树为满二叉树. 完全二叉树 如果对满二叉树的结点进行编号,约定编号从根结点起,自上而下,自左而右.则深度为k的,有

  • JAVA十大排序算法之插入排序详解

    目录 插入排序 代码实现 动图演示 代码实现 时间复杂度 算法稳定性 总结 插入排序 当我们在玩扑克牌的时候,总是在牌堆里面抽取最顶部的一张然后按顺序在手中排列. 插入排序是指在待排序的元素中,假设前面n-1(其中n>=2)个数已经是排好顺序的,现将第n个数插到前面已经排好的序列中,然后找到合适自己的位置,使得插入第n个数的这个序列也是排好顺序的. 1.对于未排序数据(一般取数组的二个元素,把第一个元素当做有序数组),在已排序序列中从左往右扫描,找到相应位置并插入. 2.为了给要插入的元素腾出空

  • JAVA十大排序算法之选择排序详解

    目录 选择排序 代码实现 动图演示 代码实现 时间复杂度 算法稳定性 总结 选择排序 1.找到数组中最大(或最小)的元素 2.将它和数组的第一个元素交换位置(如果第一个元素就是最大(小)元素那么它就和自己交换) 3.在剩下的元素中找到最大(小)的元素,将它与数组的第二个元素交换位置.如此往复,直到将整个数组排序. 代码实现 对下面数组实现排序:{87, 23, 7, 43, 78, 62, 98, 81, 18, 53, 73, 9} 动图演示 代码实现 public class Selecti

  • JAVA十大排序算法之冒泡排序详解

    目录 冒泡排序 代码实现 代码实现 时间复杂度 算法稳定性 总结 冒泡排序 1.从数组头开始,比较相邻的元素.如果第一个比第二个大(小),就交换它们两个 2.对每一对相邻元素作同样的工作,从开始第一对到尾部的最后一对,这样在最后的元素应该会是最大(小)的数 3.重复步骤1~2,重复次数等于数组的长度,直到排序完成 代码实现 对下面数组实现排序:{24, 7, 43, 78, 62, 98, 82, 18, 54, 37, 73, 9} 代码实现 public class BubbleSort {

  • 快速学习六大排序算法

    目录 1. 插入排序 2.希尔排序 3.选择排序 4.冒泡排序 5.堆排序 6.快速排序 6.1 hoare版本(左右指针法) 6.2 挖坑法 6.3 前后指针法 1. 插入排序 步骤: 1.从第一个元素开始,该元素可以认为已经被排序 2.取下一个元素tem,从已排序的元素序列从后往前扫描 3.如果该元素大于tem,则将该元素移到下一位 4.重复步骤3,直到找到已排序元素中小于等于tem的元素 5.tem插入到该元素的后面,如果已排序所有元素都大于tem,则将tem插入到下标为0的位置 6.重复

  • Java 排序算法整合(冒泡,快速,希尔,拓扑,归并)

    冒泡排序介绍 冒泡排序(Bubble Sort),又被称为气泡排序或泡沫排序. 它是一种较简单的排序算法.它会遍历若干次要排序的数列,每次遍历时,它都会从前往后依次的比较相邻两个数的大小:如果前者比后者大,则交换它们的位置.这样,一次遍历之后,最大的元素就在数列的末尾! 采用相同的方法再次遍历时,第二大的元素就被排列在最大元素之前.重复此操作,直到整个数列都有序为止! 冒泡排序图文说明 /* * a -- 待排序的数组 * n -- 数组的长度 */ public static void bub

  • 算法学习入门之使用C语言实现各大基本的排序算法

    首先来看一下排序算法的一些相关概念: 1.稳定排序和非稳定排序 简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的.反之,就是非稳定的. 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面.假如变成a1,a4,a2,a3,a5就不是稳定的了. 2.内排序和外排序 在排序过程中,所有需要排序的数都在内存,

  • Python实现各种排序算法的代码示例总结

    在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数.<数据结构>也会花大量篇幅讲解排序.之前一段时间,由于需要,我复习了一下排序算法,并用Python实现了各种排序算法,放在这里作为参考. 最简单的排序有三种:插入排序,选择排序和冒泡排序.这三种排序比较简单,它们的平均时间复杂度均为O(n^2),在这里对原理就不加赘述了.贴出来源代码. 插入排序: def insertion_sort(sort_lis

  • Python排序算法实例代码

    排序算法,下面算法均是使用Python实现: 插入排序 原理:循环一次就移动一次元素到数组中正确的位置,通常使用在长度较小的数组的情况以及作为其它复杂排序算法的一部分,比如mergesort或quicksort.时间复杂度为 O(n2) . # 1nd: 两两交换 def insertion_sort(arr): for i in range(1, len(arr)): j = i while j >= 0 and arr[j-1] > arr[j]: arr[j], arr[j-1] = a

  • 八大排序算法的Python实现

    Python实现八大排序算法,具体内容如下 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2).是稳定的排序方法.插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素).在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中. 代码实现 def inser

  • Python实现八大排序算法

    如何用Python实现八大排序算法 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2).是稳定的排序方法.插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插 入的位置),而第二部分就只包含这一个元素(即待插入元素).在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中. 代码实现 def insert_

  • Java排序算法之堆排思想及代码实现

    在介绍堆排序前,我们需要了解一下一种数据结构 -- 顶堆. 什么是顶堆? 它是一颗完全二叉树,顶堆有大顶堆和小顶堆两种.所谓大顶堆就是在这颗完全二叉树中,任何一颗子树都满足:父结点的值 > 孩子结点的值:小顶堆则相反. 如图: 什么是堆排序(Heapsort)? 利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种.可以利用数组的特点快速定位指定索引的元素. 现在给我们一个无序数组,我们将其从小到大排序,使用堆排序的实现步骤和思想如下: 1.让这个数组变成一个大根堆 2.将最后一

  • javascript中可能用得到的全部的排序算法

    导读 排序算法可以称得上是我的盲点, 曾几何时当我知道Chrome的Array.prototype.sort使用了快速排序时, 我的内心是奔溃的(啥是快排, 我只知道冒泡啊?!), 要知道学习一门技术最好的时间是三年前, 但愿我现在补习还来得及(捂脸). 因此本篇重拾了出镜概率比较高的十来种排序算法, 逐一分析其排序思想, 并批注注意事项. 欢迎对算法提出改进和讨论. 冒泡排序 冒泡排序需要两个嵌套的循环. 其中, 外层循环移动游标; 内层循环遍历游标及之后(或之前)的元素, 通过两两交换的方式

  • Python 语言实现六大查找算法

    目录 一.顺序查找算法 二.折半查找算法 三.插补查找算法 四.哈希查找算法 五.分块查找算法 六.斐波那契查找算法 七.六种查找算法的时间复杂度 一.顺序查找算法 顺序查找又称为线性查找,是最简单的查找算法.这种算法就是按照数据的顺序一项一项逐个查找,所以不管数据顺序如何,都得从头到尾地遍历一次.顺序查找的优点就是数据在查找前,不需要对其进行任何处理(包括排序).缺点是查找速度慢,如果数据列的第一个数据就是想要查找的数据,则该算法查找速度为最快,只需查找一次即可:如果查找的数据是数据列的最后一

随机推荐