python离散建模之感知器学习算法

我们将研究一种判别式分类方法,其中直接学习评估 g(x)所需的 w 参数。我们将使用感知器学习算法。
感知器学习算法很容易实现,但为了节省时间,我在下面为您提供了一个实现。该函数有几个输入:训练数据、训练标签、对权重的初始猜测和学习率。注意,对于这两个类,类标签的值必须为+1和-1。

它将返回一个元组,其中包含:

  • 1.学习w参数
  • 2.执行的迭代次数
  • 3.错误分类的样本数

花些时间检查代码。如果不清楚每一行是如何工作的,不要担心,只要让你自己知道每一行的目的是什么就可以了。代码中有一些注释可以帮助大家。

def perce(X, y, w_init, rho, max_iter=1000):
    
    (N, nfeatures) = X.shape

    # Augment the feature vectors by adding a 1 to each one. (see lecture notes)
    X = np.hstack((X, np.ones((N, 1))))
    nfeatures += 1

    w = w_init  # initialise weights
    iter = 0
    mis_class = N  # start by assuming all samples are misclassified

    while mis_class > 0 and iter < max_iter:
        iter += 1
        mis_class = 0
        gradient = np.zeros(nfeatures)  # initaliase the gradients to 0

        # loop over every training sample.
        for i in range(N):
            # each misclassified point will cause the gradient to change
            if np.inner(X[i, :], w) * y[i] <= 0:
                mis_class += 1
                gradient += -y[i] * X[i, :]
        # update the weight vector ready for the next iteration
        # Note, also that the learning rate decays over time (rho/iter)
        w -= rho / iter * gradient

    return w, iter, mis_class

解释:

X-数据矩阵。每行代表一个单独的样本
y-与X-标签行对应的整数类标签的一维数组必须为+1或-1
w_init-初始权重向量
rho-标量学习率
最大迭代次数-最大迭代次数(默认为1000)

def perce_fast(X, y, w_init, rho, max_iter=10000):
  
    (N, nfeatures) = X.shape
    X = np.hstack((X, np.ones((N, 1))))
    nfeatures += 1
    w = w_init
    iter = 0
    mis_class = N
    yy = np.tile(y, (nfeatures, 1)).T
    while mis_class > 0 and iter < max_iter:
        iter += 1
        # Compute set of misclassified points
        mc = (np.dot(X, w.transpose()) * y) <= 0
        mis_class = np.sum(mc)
        # Update weights. Note, the learning rate decays over time (rho/iter)
        w -= rho / iter * (np.sum(-yy[mc, :] * X[mc, :], axis=0))
    return w, iter, np.sum(mc)
  • 感知器算法的高效实现
  • 对于笔记本电脑数据,此版本的工作速度将提高x100!

到此这篇关于python离散建模之感知器学习算法的文章就介绍到这了,更多相关python感知器学习算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python如何实现感知器的逻辑电路

    在神经网络入门回顾(感知器.多层感知器)中整理了关于感知器和多层感知器的理论,这里实现关于与门.与非门.或门.异或门的代码,以便对感知器有更好的感觉. 此外,我们使用 pytest 框架进行测试. pip install pytest 与门.与非门.或门 通过一层感知器就可以实现与门.与非门.或门. 先写测试代码 test_perception.py: from perception import and_operate, nand_operate, or_operate def test_an

  • python实现感知器算法(批处理)

    本文实例为大家分享了Python感知器算法实现的具体代码,供大家参考,具体内容如下 先创建感知器类:用于二分类 # -*- coding: utf-8 -*- import numpy as np class Perceptron(object): """ 感知器:用于二分类 参照改写 https://blog.csdn.net/simple_the_best/article/details/54619495 属性: w0:偏差 w:权向量 learning_rate:学习率

  • python实现感知器

    上篇博客转载了关于感知器的用法,遂这篇做个大概总结,并实现一个简单的感知器,也为了加深自己的理解. 感知器是最简单的神经网络,只有一层.感知器是模拟生物神经元行为的机器.感知器的模型如下: 给定一个n维的输入 ,其中w和b是参数,w为权重,每一个输入对应一个权值,b为偏置项,需要从数据中训练得到. 激活函数 感知器的激活函数可以有很多选择,比如我们可以选择下面这个阶跃函数f来作为激活函数: 输出为: 事实上感知器可以拟合任何线性函数,任何线性分类或线性回归的问题都可以用感知器来解决.但是感知器不

  • 详解如何用Python实现感知器算法

    目录 一.题目 二.数学求解过程 三.感知器算法原理及步骤 四.python代码实现及结果 一.题目 二.数学求解过程 该轮迭代分类结果全部正确,判别函数为g(x)=-2x1+1 三.感知器算法原理及步骤 四.python代码实现及结果 (1)由数学求解过程可知: (2)程序运行结果 (3)绘图结果 ''' 20210610 Julyer 感知器 ''' import numpy as np import matplotlib.pyplot as plt def get_zgxl(xn, a):

  • python实现神经网络感知器算法

    现在我们用python代码实现感知器算法. # -*- coding: utf-8 -*- import numpy as np class Perceptron(object): """ eta:学习率 n_iter:权重向量的训练次数 w_:神经分叉权重向量 errors_:用于记录神经元判断出错次数 """ def __init__(self, eta=0.01, n_iter=2): self.eta = eta self.n_iter

  • python实现多层感知器

    写了个多层感知器,用bp梯度下降更新,拟合正弦曲线,效果凑合. # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def sigmod(z): return 1.0 / (1.0 + np.exp(-z)) class mlp(object): def __init__(self, lr=0.1, lda=0.0, te=1e-5, epoch=100, size=None): self.lear

  • 感知器基础原理及python实现过程详解

    简单版本,按照李航的<统计学习方法>的思路编写 数据采用了著名的sklearn自带的iries数据,最优化求解采用了SGD算法. 预处理增加了标准化操作. ''' perceptron classifier created on 2019.9.14 author: vince ''' import pandas import numpy import logging import matplotlib.pyplot as plt from sklearn.datasets import loa

  • 基于 Python 实践感知器分类算法

    Perceptron是用于二进制分类任务的线性机器学习算法.它可以被认为是人工神经网络的第一种和最简单的类型之一.绝对不是"深度"学习,而是重要的组成部分.与逻辑回归相似,它可以快速学习两类分类任务在特征空间中的线性分离,尽管与逻辑回归不同,它使用随机梯度下降优化算法学习并且不预测校准概率. 在本教程中,您将发现Perceptron分类机器学习算法.完成本教程后,您将知道: Perceptron分类器是一种线性算法,可以应用于二进制分类任务. 如何使用带有Scikit-Learn的Pe

  • python离散建模之感知器学习算法

    我们将研究一种判别式分类方法,其中直接学习评估 g(x)所需的 w 参数.我们将使用感知器学习算法.感知器学习算法很容易实现,但为了节省时间,我在下面为您提供了一个实现.该函数有几个输入:训练数据.训练标签.对权重的初始猜测和学习率.注意,对于这两个类,类标签的值必须为+1和-1. 它将返回一个元组,其中包含: 1.学习w参数 2.执行的迭代次数 3.错误分类的样本数 花些时间检查代码.如果不清楚每一行是如何工作的,不要担心,只要让你自己知道每一行的目的是什么就可以了.代码中有一些注释可以帮助大

  • python实现感知器算法详解

    在1943年,沃伦麦卡洛可与沃尔特皮茨提出了第一个脑神经元的抽象模型,简称麦卡洛可-皮茨神经元(McCullock-Pitts neuron)简称MCP,大脑神经元的结构如下图.麦卡洛可和皮茨将神经细胞描述为一个具备二进制输出的逻辑门.树突接收多个输入信号,当输入信号累加超过一定的值(阈值),就会产生一个输出信号.弗兰克罗森布拉特基于MCP神经元提出了第一个感知器学习算法,同时它还提出了一个自学习算法,此算法可以通过对输入信号和输出信号的学习,自动的获取到权重系数,通过输入信号与权重系数的乘积来

  • python数学建模是加深Numpy和Pandas学习

    目录 前言 Numpy 学习 1-numpy.array 2-numpy.empty 3-numpy.zeros 4-numpy.ones NumPy 从已有的数组创建数组 1-numpy.asarray 2-numpy.frombuffer 3-numpy.fromiter NumPy 从数值范围创建数组 1-numpy.arange 2-numpy.linspace 3-numpy.logspace 综合运用[array.arange.linspace.lonspace]: 综合运用[one

  • Python数学建模学习模拟退火算法整数规划问题示例解析

    目录 1.整数规划问题 2.模拟退火算法处理整数约束 3.数模案例 3.1 问题描述: 3.2 问题分析: 3.3 问题建模: 3.4 惩罚函数法求解约束优化问题: 4.模拟退火算法 Python 程序:求解整数规划问题 5.运行结果 参考文献: 1.整数规划问题 线性规划问题的最优解可能是分数或小数.但很多实际问题常常要求某些变量必须是整数解,例如:机器的台数.工作的人数或装货的车数.根据对决策变量的不同要求,整数规划又可以分为:纯整数规划.混合整数规划.0-1整数规划.混合0-1规划. 整数

  • Python数学建模学习模拟退火算法约束条件处理示例解析

    目录 1.最优化与线性规划 2.模拟退火算法处理约束条件 3.惩罚函数法 4.数模案例 4.1 问题描述: 4.2 问题建模: 5.模拟退火算法 Python 程序 6.运行结果 参考文献: 1.最优化与线性规划 最优化问题的三要素是决策变量.目标函数和约束条件. 线性规划(Linear programming),是研究线性约束条件下线性目标函数的极值问题的优化方法,常用于解决利用现有的资源得到最优决策的问题. 简单的线性规划问题可以用 Lingo软件求解,Matlab.Python 中也有求解

  • Python数学建模学习模拟退火算法多变量函数优化示例解析

    目录 1.模拟退火算法 2.多变量函数优化问题 3.模拟退火算法 Python 程序 4.程序运行结果 1.模拟退火算法 退火是金属从熔融状态缓慢冷却.最终达到能量最低的平衡态的过程.模拟退火算法基于优化问题求解过程与金属退火过程的相似性,以优化目标为能量函数,以解空间为状态空间,以随机扰动模拟粒子的热运动来求解优化问题([1] KIRKPATRICK,1988). 模拟退火算法结构简单,由温度更新函数.状态产生函数.状态接受函数和内循环.外循环终止准则构成. 温度更新函数是指退火温度缓慢降低的

随机推荐