C语言动态规划之背包问题详解

01背包问题

给定n种物品,和一个容量为C的背包,物品i的重量是w[i],其价值为v[i]。问如何选择装入背包的物品,使得装入背包中的总价值最大?(面对每个武平,只能有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入物品多次)

  • 声明一个数组f[n][c]的二维数组,f[i][j]表示在面对第i件物品,且背包容量为j时所能获得的最大价值。
  • 根据题目要求进行打表查找相关的边界和规律
  • 根据打表列写相关的状态转移方程
  • 用程序实现状态转移方程

真题演练:

一个旅行者有一个最多能装M公斤的背包,现在有n件物品,它们的重量分别是W1、W2、W3、W4、…、Wn。它们的价值分别是C1、C3、C2、…、Cn,求旅行者能获得最大价值。

输入描述:

第一行:两个整数,M(背包容量,M<= 200)和N(物品数量,N<=30);
       第2…N+1行:每行两个整数Wi,Ci,表示每个物品的质量与价值。

输出描述:

仅一行,一个数,表示最大总价值

样例:

输入:
10 4
2 1
3 3
4 5
7 9
输出:
12

解题步骤

定义一个数组dp[i][j]表示容量为j时,拿第i个物品时所能获取的最大价值。

按照题目要求进行打表,列出对应的dp表。

W[i](质量) V[i](价值) 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 1 1 1 1 1 1 1 1 1
3 3 0 0 1 3 3 4 4 4 4 4 4
4 5 0 0 1 3 5 5 6 8 8 9 9
7 9 0 0 1 3 5 5 6 9 9 10 12

对于一个动态规划问题设置下标时最好从0开始,因为动态规划经常会和上一个状态有关系!从上面的dp表可以看出来对于一个物品我们拿还是不难需要进行两步来判断。第一步:判断背包当前的容量j是否大于物品当前的质量,如果物品的质量大于背包的容量那么就舍弃。第二步:如果背包可以装下这个物品,就需要判断装下该物品获取的最大价值是不是大于不装下这个物品所获取的最大价值,如果大于那么就把东西装下!根据这样的思想我们可以得到状态转移方程:

如果单签背包的容量可以装下物品:
dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);
如果当前背包的容量装不下该物品:
dp[i][j]=dp[i-1][j];

#include <stdio.h>
int max(const int a,const int b)
{
    return a>b ? a:b;
}
int main()
{
    int w[35]={0},v[35]={0},dp[35][210]={0};
    int n,m;
    scanf("%d %d",&m,&n);
    int i,j;
    for(i=1;i<=n;i++){
        scanf("%d %d",&w[i],&v[i]);
    }
    for(i=1;i<=n;i++){
        for(j=1;j<=m;j++){
            if(j>=w[i])//如果当前背包的容量大于商品的质量
            {
                dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//判断是否应该拿下
            }
            else//大于背包的当前容量
            {
                dp[i][j]=dp[i-1][j];
            }
        }
    }
    for(int k=0;k<=n;k++)
    {
        for(int l=0;l<=m;l++)
        {
            printf("%d ",dp[k][l]);
        }
        printf("\n");
    }
    printf("%d\n",dp[n][m]);
}

通过运行以上程序可以看到最终的输出dp表和我们的预期是相符合的!但是并没有结束,动态规划有一个后无效性原则(当前状态只与前一个状态有关)。那么我们就可以对dp数组进行压缩处理,将二维数组转换成一维数组。每一次选择物品对这个数组进行更新就可以啦!那么就可以将状态转移方程压缩成为 dp[j]=max(dp[j],dp[j-w[i]]+v[i]) 。不过我们需要注意的是在压缩过后我们需要逆序刷新数组的值,如果正序刷新的话就不能保存上一个阶段对应获取最大价值的值了。那么我们就可以写出以下程序:

#include <stdio.h>
int max(const int a,const int b)
{
    return a>b ? a:b;
}
int main()
{
    int w[35]={0},v[35]={0},dp[210]={0};
    int n,m;
    scanf("%d %d",&m,&n);
    int i,j;
    for(i=1;i<=n;i++){
        scanf("%d %d",&w[i],&v[i]);
    }
    for(i=1;i<=n;i++){
        for(j=m;j>=0;j--){
            if(j>=w[i])//如果当前背包的容量大于商品的质量
            {
                dp[j]=max(dp[j],dp[j-w[i]]+v[i]);//判断是否应该拿下
            }
        }
        for(int k=0;k<=m;k++)
        {
            printf("%d ",dp[k]);
        }
        printf("\n");
    }
    printf("%d\n",dp[n][m]);
}

可以看出和上面输出的dp表并没有什么区别!

完全背包问题

题目描述:

设有n种物品,每种物品有一个重量及一个价值,但每种物品的数量都是无限的,有一个背包,最大载重量为m,今从n中物品中选取若干件(同一种物品可以多次选取)使其质量小于等于m,而价值的和为最大。

输入:

第一行:两个整数,M(背包容量,M<= 200)和N(物品数量,N<=30);
        第2…N+1行:每行两个整数Wi,Ci,表示每个物品的质量与价值。

输出:

仅一行,一个数,表示最大总价值。

样例:

输入:
10 4
2 1
3 3
4 5
7 9
输出:
12

与01背包问题不同的是这不是每个物品选择拿与不拿的问题了,而是要选择几个该物品,最终选择价值最大的。那么我们可以在01背包的问题上继续进行思考这个问题,01背包中我们知道了之前的状态,那么我无非就是要判断拿k个物品和不拿时进行比较,如果价值比之前大就拿下。而每个种类的物品最多只能拿取j/w[i]个,再加一重循环不就可以啦!程序的核心代码如下:

for(i=1;i<=n;i++){
    for(j=m;j>=0;j--){
        for(k=0;k<=j/w[i];k++)
        {
            dp[j]=max(dp[j],dp[j-k*w[i]]+k*v[i]);//判断是否应该拿下k个商品
        }
    }
}

通过代码可以发现通过这种朴素的算法是需要三重循环的,好像对时间复杂度比较高。那么我们也借鉴01背包来对完全背包进行打表!

w[i](质量) v[i](价值) 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 1 1 2 2 3 3 4 4 5
3 3 0 0 1 3 3 4 6 6 7 9 9
4 5 0 0 1 3 5 5 6 8 10 10 11
7 9 0 0 1 3 5 5 6 9 10 10 12

根据表中红色标记的数值来看,需要注意的是如果背包的容量不能装下当前物品的质量。那么当前容量所能装下价值最大的物品就等于上一个物品所能保存的最大价值。重点看一下4是怎么来的,这个4并不是从 i-1来的,而是从i来的。通过正序推出该物品的价值。状态转移方程就可以写成是 :dp[i][j]=max(dp[i-1][j],dp[i][j-w[i]]+v[i]) 和01背包的唯一区别是max的第二个参数。01背包是i-1,而完全背包是i,而且是通过正序推理得到的状态转移方程。

根据状态转移方程应该很快就能写出程序了吧!但是根据dp的后无效性原则,对动态规划状态转移方程进行压缩!压缩过后就是dp[j]=max(dp[j],dp[j-w[i]]+v[i]) ,小伙伴们一看是不是和01背包的状态转移方程一模一样啊!但是但是两个有个重大的区别:01背包使用的是上一条的数据,所以需要逆序避免覆盖之前的值,而完全背包是从当前更新后的数据进行相关的操作的 。通过以上分析我们可以写出如下程序:

#include <stdio.h>
int max(const int a,const int b)
{
    return a>b ? a:b;
}
int main()
{
    int w[35]={0},v[35]={0},dp[210]={0};
    int n,m;
    scanf("%d %d",&m,&n);
    int i,j;
    for(i=1;i<=n;i++){
        scanf("%d %d",&w[i],&v[i]);
    }
    for(i=1;i<=n;i++){
        for(j=0;j<=m;j++){
            if(j>=w[i])//如果当前背包的容量大于商品的质量
            {
                dp[j]=max(dp[j],dp[j-w[i]]+v[i]);//判断是否应该拿下
            }
        }
        for(int k=0;k<=m;k++)
        {
            printf("%d ",dp[k]);
        }
        printf("\n");
    }
    printf("%d\n",dp[m]);
}

通过以上代码的输出可以看出打印的dp表和我们推测的并没有什么区别,程序正确!

多重背包问题

题目描述:

为了庆祝班级在校运会上取得了全校第一名的好成绩,班主任决定开一场庆功会,为此拨款购买奖品犒劳运动员。期望拨款金额能够购买最大价值的奖品,可以补充他们的精力和体力。

输入:

第一行输入两个数n(n<=500),m(m<=6000),其中n代表希望购买的奖品的种数,m表示拨款金额。

接下来的n行,每行3个数,w,v,s分别表示第i种奖品的价格、价值(价格与价值是不同的概念)和能购买的最大数量(买0件到s件均可),其中w<=100,v<=1000,s<=10;

输出:

一行:一个数,表示此次购买能获得的最大价值(注意!不是价格)。

示例:

输入:
5 1000
输出:
80 20 4
40 50 9
30 50 7
40 30 6
20 20 1

与完全背包不同的是:完全背包每个物品的个数是无限的,而多重背包是每个物品只能拿指定的件数。那么最容易想到的方法就是把相同的物品分开,比如说有n个a物品,就将它分成a1 a2 a3 a4…an然后用01背包的方法去解决。那么我们就可以写出以下核心代码:

for(i=1;i<=n;i++){
    for(j=m;j>=0;j--){
        for(k=0;k<=s[i]&&j>=k*w[i];k++)
        {
            dp[j]=max(dp[j],dp[j-k*w[i]]+k*v[i]);//从01背包的状态转移方程,去增加第i个物品拿k个的循环
        }
    }
}

通过以上的代码可以看出当s[i]特别大的时候那么就会消耗非常多的时间复杂度,那么肯定是有优化的方法的!那么我们可以通过二进制来对这个同一个物品应该拿取几个进行优化。我们可以通过以下问题进行研究:

有1000个苹果,10个箱子怎么放,不管我想拿多少个苹果,都可以成箱成箱的拿?

用二进制的思想就是每一个箱子代表二进制对应的位数,那么210大于1024应该是可以满足题目条件的。那么每个箱子放的苹果分别是1,2,4,8,16,32,…488(1000-512)。需要一个苹果拿第一箱,需要两个苹果拿第二项,需要三个苹果拿一二箱。那么对于需要拿1000箱的问题本来要循环1000次,经过优化以后只用循环10次就可以啦!那么我们就可以写出以下程序啦!

for(i=1;i<=n;i++){
    for(j=m;j>=0;j--){
        for(k=0;k<=s[i]&&j>=k*w[i];k<<=1)
        {
        	if((k<<1)>s[i]&&j>=k*w[i])
        	{
        		dp[j]=max(dp[j],dp[j-(s[i]-k)*w[i]]+(s[i]-k)*v[i]);
        	}
            else
            	dp[j]=max(dp[j],dp[j-k*w[i]]+k*v[i]);//从01背包的状态转移方程,去增加第i个物品拿k个的循环
        }
    }
}

动态规划解题思路

对于动态规划问题我们一般的思路如下:

  • 判断是动态规划的解题思路以后立马定义一个数组,把数组对应的下标、对应的值想清楚。
  • 然后根据题目意思找规律进行打表,找出初始状态以及一些边界条件。
  • 根据打表的数据找出状态转移方程。
  • 最后根据状态转移方程进行编写程序。

到此这篇关于C语言动态规划之背包问题详解的文章就介绍到这了,更多相关C语言 背包内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言矩阵连乘 (动态规划)详解

    动态规划法 题目描述:给定n个矩阵{A1,A2....An},其中Ai与Ai+1是可以相乘的,判断这n个矩阵通过加括号的方式相乘,使得相乘的次数最少! 以矩阵链ABCD为例 按照矩阵链长度递增计算最优值 矩阵链长度为1时,分别计算出矩阵链A.B.C.D的最优值 矩阵链长度为2时,分别计算出矩阵链AB.BC.CD的最优值 矩阵链长度为3时,分别计算出矩阵链ABC.BCD的最优值 矩阵链长度为4时,计算出矩阵链ABCD的最优值 动归方程: 分析: k为矩阵链断开的位置 d数组存放矩阵链计算的最优值,

  • C语言使用DP动态规划思想解最大K乘积与乘积最大问题

    最大K乘积问题 设I是一个n位十进制整数.如果将I划分为k段,则可得到k个整数.这k个整数的乘积称为I的一个k乘积.试设计一个算法,对于给定的I和k,求出I的最大k乘积. 编程任务: 对于给定的I 和k,编程计算I 的最大k 乘积. 需求输入: 输入的第1 行中有2个正整数n和k.正整数n是序列的长度:正整数k是分割的段数.接下来的一行中是一个n位十进制整数.(n<=10) 需求输出: 计算出的最大k乘积. 解题思路:DP 设w(h,k) 表示: 从第1位到第K位所组成的十进制数,设m(i,j)

  • C语言动态规划之背包问题详解

    01背包问题 给定n种物品,和一个容量为C的背包,物品i的重量是w[i],其价值为v[i].问如何选择装入背包的物品,使得装入背包中的总价值最大?(面对每个武平,只能有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入物品多次) 声明一个数组f[n][c]的二维数组,f[i][j]表示在面对第i件物品,且背包容量为j时所能获得的最大价值. 根据题目要求进行打表查找相关的边界和规律 根据打表列写相关的状态转移方程 用程序实现状态转移方程 真题演练: 一个旅行者有一个最多能装M公斤的背

  • C语言数学问题与简单DP背包问题详解

    目录 数学 买不到的数目 蚂蚁感冒 饮料换购 简单DP 背包问题 二维 一维 数学 顾名思义,数学类的题就是都可以用数学知识求解. 买不到的数目 这是第四届蓝桥杯省赛C++A组,第四届蓝桥杯省赛JAVAC组的一道题 小明开了一家糖果店. 他别出心裁:把水果糖包成4颗一包和7颗一包的两种. 糖果不能拆包卖. 小朋友来买糖的时候,他就用这两种包装来组合. 当然有些糖果数目是无法组合出来的,比如要买 10 颗糖. 你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17. 大于17的任何数字

  • C语言动态规划多种背包问题分析讲解

    目录 写在前面 01背包问题 完全背包问题 多重背包问题 I 多重背包问题 II 为什么可以这样优化呢 一 .二进制与十进制 二 .动态规划的时间复杂度估算 三 .多重背包 分组背包问题 写在前面 之前讲过简单DP,经典01背包问题,在这我将会把背包问题更深入的讲解,希望能帮助大家更好的理解. 01背包问题 C语言数学问题与简单DP01背包问题详解 先回忆一下这个图 在这我再将01背包问题代码发一遍,可以用来做对比. 二维: #include<bits/stdc++.h> using name

  • 基于JS脚本语言的基础语法详解

    JS脚本语言的基础语法:输出语法  alert("警告!");  confirm("确定吗?");   prompt("请输入密码");为弱类型语言: 开始时要嵌入JS代码:<script type="text/javascript"></script>: 关于写程序是需注意的基本语法: 1.所有的字符全都是英文半角的: 2.大部分情况下每条语句结束后要加分号: 3.每一块代码结束后加换行:4.程序前呼

  • Linux 下C语言连接mysql实例详解

    Linux 下C语言连接mysql实例详解 第一步: 安装mysql, 参考:http://www.jb51.net/article/39190.htm 第二步: 安装mysql.h函数库 sudo apt-get install libmysqlclient-dev 执行之后就可以看到/usr/include/MySQL目录了 然后开始我们的链接. 首先看我的数据库 mysql> show databases; +--------------------+ | Database | +----

  • C语言文件复制实例详解

    C语言文件复制实例详解 文件复制,在Linux中,将生成的read.o 重新文件拷贝一份复制到ReadCopy.o中,并且更改ReadCopy.o文件的操作权限.使其能够正常运行. 实例代码: #include <stdio.h> int main(){ FILE *r_file = fopen ("read.o","rb"); FILE *w_file = fopen ("ReadCopy.o","w"); ch

  • C++语言实现hash表详解及实例代码

    C++语言实现hash表详解 概要: hash表,有时候也被称为散列表.个人认为,hash表是介于链表和二叉树之间的一种中间结构.链表使用十分方便,但是数据查找十分麻烦:二叉树中的数据严格有序,但是这是以多一个指针作为代价的结果.hash表既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便. 打个比方来说,所有的数据就好像许许多多的书本.如果这些书本是一本一本堆起来的,就好像链表或者线性表一样,整个数据会显得非常的无序和凌乱,在你找到自己需要的书之前,你要经历许多的查询过程:而如果

  • C语言 全局变量和局部变量详解及实例

    C语言 全局变量和局部变量详解 核心内容: 1.局部变量和全局变量 变量按照作用域分为:全局变量和局部变量 全局变量的作用域:从定义位置开始到下面整个程序结束. 局部变量的作用域:在一个函数内部定义的变量只能在本函数内部进行使用. OK,上面的效果用Java语言实现一下: public class App1 { public static int k = 10;//相当于全局变量 public static void main(String[] args) { int i = 10;//局部变量

  • JVM内存管理之JAVA语言的内存管理详解

    引言 内存管理一直是JAVA语言自豪与骄傲的资本,它让JAVA程序员基本上可以彻底忽略与内存管理相关的细节,只专注于业务逻辑.不过世界上不存在十全十美的好事,在带来了便利的同时,也因此引入了很多令人抓狂的内存溢出和泄露的问题. 可怕的事情还不只如此,有些使用其它语言开发的程序员,给JAVA程序员扣上了一个"不懂内存"的帽子,这着实有点让人难以接受.毕竟JAVA当中没有malloc和delete.没有析构函数.没有指针,刚开始接触JAVA的程序员们又怎么可能接触内存这一部分呢,更何况有不

  • C语言柔性数组实例详解

    本文实例分析了C语言柔性数组的概念及用法,对于进一步学习C程序设计有一定的借鉴价值.分享给大家供大家参考.具体如下: 一般来说,结构中最后一个元素允许是未知大小的数组,这个数组就是柔性数组.但结构中的柔性数组前面必须至少一个其他成员,柔性数组成员允许结构中包含一个大小可变的数组,sizeof返回的这种结构大小不包括柔性数组的内存.包含柔数组成员的结构用malloc函数进行内存的动态分配,且分配的内存应该大于结构的大小以适应柔性数组的预期大小.柔性数组到底如何使用? 不完整类型 C和C++对于不完

随机推荐