基于Python代码实现Apriori 关联规则算法

目录
  • 一、关联规则概述
  • 二、应用场景举例
    • 1、股票涨跌预测
    • 2、视频、音乐、图书等推荐
    • 3、打车路线预测(考虑时空)
    • 4、风控策略自动化挖掘
  • 三、3个最重要的概念
    • 1、支持度
    • 2、置信度
    • 3、提升度
    • 4、 频繁项集
  • 四、Python算法介绍
  • 五、挖掘实例

一、关联规则概述

1993年,Agrawal等人在首先提出关联规则概念,迄今已经差不多30年了,在各种算法层出不穷的今天,这算得上是老古董了,比很多人的年纪还大,往往是数据挖掘的入门算法,但深入研究的不多,尤其在风控领域,有着极其重要的应用潜力,是一个被低估的算法,很少见到公开的文章提及,我尝试一一剖析,希望给你带来一定的启示。

我倒是进行了比较深刻、全面的思考,并进行了大量的实验,这个话题感觉可以聊三天三夜。世界风云变幻,但本质没变化,各种关联一直存在,有意或无意的!

比如你女朋友, 低头玩手指+沉默 ,那大概率生气了,那这就是你总结出来的规则。啤酒与尿布的例子相信很多人都听说过吧,故事是这样的:在一家超市中,人们发现了一个特别有趣的现象,尿布与啤酒这两种风马牛不相及的商品居然摆在一起,但这一奇怪的举措居然使尿布和啤酒的销量大幅增加了。为什么有这么奇怪现象呢?是因为美国妇女在丈夫回家前买尿布,然后丈夫顺手买了自己喜欢的啤酒,所以发生了这么有趣的事情。

很多人只记住了啤酒尿不湿,很少深入思考,我们稍微转换下,日常的事情,也存在非常多的关联规则?

二、应用场景举例

1、股票涨跌预测

放量+高换手率 -> 大概率上涨,历史数据挖掘,假如发现放量+高换手率的股票大概率上涨,则挖掘当天满足条件的个股,然后第二天买入,躺赚。

2、视频、音乐、图书等推荐

根据历史数据,如果大规模的存在某些用户看剧列表为:小时代 -> 上海堡垒,那么一个新的用户看了小时代,马上就给推荐上海堡垒,那大概率也会被观看,呼兰的账号,就是这么脏的。

3、打车路线预测(考虑时空)

根据大量的数据挖掘出以下规则

早上: 起点家->目的地公司,

晚上: 起点家->目的高铁站

周末: 起点家->目的地购物中心

那当你每天早上打开软件的时候,打车软件就会推荐你的公司作为目的地,大大的减少用户的打车时间。如下图,我输入小区名称,马上给我推荐了三个地方,杭州东站第一位,因为平时的打车这个组合的支持度最高。

4、风控策略自动化挖掘

根据历史标题,总结出规律发现商品标题包含 老司机+百度网盘 -> 色情风险高,那后面遇到这标题包含这两个词语的,就直接拒绝了。

根据历史行为数据,发现了 沉默用户+非常用地登录+修改密码 ->大概率都被盗号了,那一个新的账户满足这个三个条件,那马上就进行账户冻结或者实人认证,就能避免盗号风险的发生。

根据历史数据,发现用户A +B 每天都相隔10s登录 ,则可以认为A、B存在关联关系,可能是机器控制的同一批薅羊毛账户。

风控策略的自动化挖掘,这个也是我们后续要重点关注和讲解的地方。

三、3个最重要的概念

关联规则有三个核心概念需要理解: 支持度、置信度、提升度 ,下面用最经典的啤酒-尿不湿案例给大家举例说明这三个概念,假如以下是几名客户购买订单的商品列表:

1、支持度

支持度 (Support): 指某个 商品组合出现的次数 与 总订单数 之间的比例。

在这个例子中,我们可以看到“牛奶”出现了 4 次,那么这 5 笔订单中“牛奶”的支持度就是 4/5=0.8。

同样“ 牛奶 + 面包 ”出现了 3 次,那么这 5 笔订单中“牛奶 + 面包”的支持度就是 3/5=0.6

这样理解起来是不是非常简单了呢,大家可以动动手计算下 '尿不湿+啤酒' 的支持度是多少?

2、置信度

置信度 (Confidence): 指的就是当你购买了商品 A,会有多大的概率购买商品 B,在包含A的子集中,B的支持度,也就是包含B的订单的比例。

置信度(牛奶→啤酒)= 3/4=0.75,代表购买了牛奶的订单中,还有多少订单购买了啤酒,如下面的表格所示。

置信度(啤酒→牛奶)= 3/4=0.75,代表如果你购买了啤酒,有多大的概率会购买牛奶?

置信度(啤酒→尿不湿)= 4/4=1.0,代表如果你购买了啤酒,有多大的概率会买尿不湿,下面的表格看出来是100%。

由上面的例子可以看出,置信度其实就是个条件概念,就是说在 A 发生的情况下,B 发生的概率是多大。如果仅仅知道这两个概念,很多情况下还是不够用,需要用到提升度的概念。比如A出现的情况下B出现的概率为80%,那到底AB是不是有关系呢,不一定,人家B本来在大盘中的比例95%。你的A出现,反而减少了B出现的概率。

3、提升度

提升度 (Lift): 我们在做商品推荐或者风控策略的时候,重点考虑的是提升度,因为提升度代表的是A 的出现,对B的出现概率提升的程度。

提升度 (A→B) = 置信度 (A→B)/ 支持度 (B)

所以提升度有三种可能:

  • 提升度 (A→B)>1:代表有提升;
  • 提升度 (A→B)=1:代表有没有提升,也没有下降;
  • 提升度 (A→B)<1:代表有下降。

提升度 (啤酒→尿不湿) =置信度 (啤酒→尿不湿) /支持度 (尿不湿) = 1.0/0.8 = 1.25,可见啤酒对尿不湿是有提升的,提升度为1.25,大于1。

可以简单理解为:在全集的情况下,尿不湿的概率为80%,而在包含啤酒这个子集中,尿不湿的概率为100%,因此,子集的限定,提高了尿不湿的概率,啤酒的出现,提高了尿不湿的概率。

4、 频繁项集

频繁项集(frequent itemset) : 就是支持度大于等于最小支持度 (Min Support) 阈值的项集,所以小于最小值支持度的项目就是非频繁项集,而大于等于最小支持度的的项集就是频繁项集,项集可以是单个商品,也可以是组合。

频繁集挖掘面临的最大难题就是项集的组合爆炸 ,如下图:

随着商品数量增多,这个网络的规模将变得特别庞大,我们不可能根据传统方法进行统计和计算,为了解决这个问题,Apriori算法提出了两个核心思想:

某个项集是频繁的,那么它的所有子集也是频繁的 {Milk, Bread, Coke} 是频繁的 → {Milk, Coke} 是频繁的

如果一个项集是 非频繁项集,那么它的所有超集也是非频繁项集 {Battery} 是非频繁的 → {Milk, Battery} 也非平凡

如下图,如果我们已知 B 不频繁,那么可以说图中所有绿色的项集都不频繁,搜索时就要这些项避开,减少计算开销。

同理,如果下图所示, {A,B}这个项集是非频繁的 ,那虚线框后面的都不用计算了, 运用Apriori算法的思想,我们就能去掉很多非频繁的项集,大大简化计算量,当然,面对大规模数据的时候,这种排除还是解决不了问题,于是还有FP-Growth(Frequent pattern Growth,频繁模式增长树)这种更高效的方法,后面有机会慢慢讲。

需要注意的是:

1)如果支持度和置信度阈值过高,虽然可以在一定程度上减少数据挖掘的时间,但是一些隐含在数据中的非频繁特征项容易被忽略掉,难以发现足够有用的规则;

2)如果支持度和置信度阈值过低,可能会导致大量冗余和无效的规则产生,导致较大计算量负荷。

四、Python算法介绍

这里用的是Python举例,用的包是apriori,当然R语言等其他语言,也有对应的算法包,原理都是一样的,大家自行进行试验。

#包安装 我们使用efficient-apriori,python中也可以利用apyori库和mlxtend库
pip install efficient-apriori

#加载包
from efficient_apriori import apriori
‘'‘
apriori(transactions: typing.Iterable[typing.Union[set, tuple, list]],
        min_support: float=0.5,
        min_confidence: float=0.5,
        max_length: int=8,
        verbosity: int=0,
        output_transaction_ids: bool=False)
上面就是这个函数的参数
min_support:最小支持度
min_confidence:最小置信度
max_length:项集长度
# 构造数据集
data = [('牛奶','面包','尿不湿','啤酒','榴莲'),
        ('可乐','面包','尿不湿','啤酒','牛仔裤'),
        ('牛奶','尿不湿','啤酒','鸡蛋','咖啡'),
        ('面包','牛奶','尿不湿','啤酒','睡衣'),
        ('面包','牛奶','尿不湿','可乐','鸡翅')]
#挖掘频繁项集和频繁规则
itemsets, rules = apriori(data, min_support=0.6,  min_confidence=1)
#频繁项集
print(itemsets)
{1: {('啤酒',): 4, ('尿不湿',): 5, ('牛奶',): 4, ('面包',): 4},
2: {('啤酒', '尿不湿'): 4, ('啤酒', '牛奶'): 3, ('啤酒', '面包'): 3, ('尿不湿', '牛奶'): 4, ('尿不湿', '面包'): 4, ('牛奶', '面包'): 3}, 
3: {('啤酒', '尿不湿', '牛奶'): 3, ('啤酒', '尿不湿', '面包'): 3, ('尿不湿', '牛奶', '面包'): 3}}
itemsets[1] #满足条件的一元组合
{('啤酒',): 4, ('尿不湿',): 5, ('牛奶',): 4, ('面包',): 4}
itemsets[2]#满足条件的二元组合
{('啤酒', '尿不湿'): 4,('啤酒', '牛奶'): 3,('啤酒', '面包'): 3,('尿不湿', '牛奶'): 4,('尿不湿', '面包'): 4,('牛奶', '面包'): 3}
itemsets[3]#满足条件的三元组合
{('啤酒', '尿不湿', '牛奶'): 3, ('啤酒', '尿不湿', '面包'): 3, ('尿不湿', '牛奶', '面包'): 3}
#频繁规则
print(rules)
[{啤酒} -> {尿不湿}, {牛奶} -> {尿不湿},
{面包} -> {尿不湿}, {啤酒, 牛奶} -> {尿不湿},
{啤酒, 面包} -> {尿不湿}, {牛奶, 面包} -> {尿不湿}]
#我们把max_length=2这个参数加进去看看
itemsets, rules = apriori(data, min_support=0.6,
min_confidence=0.5,
max_length=2)
{1: {('牛奶',): 4, ('面包',): 4, ('尿不湿',): 5, ('啤酒',): 4, ('R',): 4},
2: {('R', '啤酒'): 4, ('R', '尿不湿'): 4, ('R', '牛奶'): 3, ('R', '面包'): 3, ('啤酒', '尿不湿'): 4, ('啤酒', '牛奶'): 3, ('啤酒', '面包'): 3, ('尿不湿', '牛奶'): 4, ('尿不湿', '面包'): 4, ('牛奶', '面包'): 3}}
#通过这个数据我们可以看到,项集的长度只包含有两个项了

五、挖掘实例

每个导演都有自己的偏好、比如周星驰有星女郎,张艺谋有谋女郎,且巩俐经常在张艺谋的电影里面出现,因此,每个导演对演员的选择都有一定的偏爱,我们以宁浩导演为例,分析下选择演员的一些偏好,没有找到公开的数据集,自己手动扒了一部分,大概如下,有些实在有点多,于是简化下进行分析。

可以看到,我们一共扒了9部电影,计算的时候,支持度的时候,总数就是9.

#把电影数据转换成列表 
data = [['葛优','黄渤','范伟','邓超','沈腾','张占义','王宝强','徐峥','闫妮','马丽'], 
['黄渤','张译','韩昊霖','杜江','葛优','刘昊然','宋佳','王千源','任素汐','吴京'], 
['郭涛','刘桦','连晋','黄渤','徐峥','优恵','罗兰','王迅'], 
['黄渤','舒淇','王宝强','张艺兴','于和伟','王迅','李勤勤','李又麟','宁浩','管虎','梁静','徐峥','陈德森','张磊'], 
['黄渤','沈腾','汤姆·派福瑞','马修·莫里森','徐峥','于和伟','雷佳音','刘桦','邓飞','蔡明凯','王戈','凯特·纳尔逊','王砚伟','呲路'],
 ['徐峥','黄渤','余男','多布杰','王双宝','巴多','杨新鸣','郭虹','陶虹','黄精一','赵虎','王辉'], 
 ['黄渤','戎祥','九孔','徐峥','王双宝','巴多','董立范','高捷','马少骅','王迅','刘刚','WorapojThuantanon','赵奔','李麒麟','姜志刚','王鹭','宁浩'], 
 ['黄渤','徐峥','袁泉','周冬雨','陶慧','岳小军','沈腾','张俪','马苏','刘美含','王砚辉','焦俊艳','郭涛'], 
 ['雷佳音','陶虹','程媛媛','山崎敬一','郭涛','范伟','孙淳','刘桦','黄渤','岳小军','傅亨','王文','杨新鸣']] 
#算法应用 
itemsets, rules = apriori(data, min_support=0.5,  min_confidence=1) 
print(itemsets)
{1: {('徐峥',): 7, ('黄渤',): 9}, 2: {('徐峥', '黄渤'): 7}} 
print(rules) [{徐峥} -> {黄渤}]

通过上述分析可以看出:

在宁浩的电影中,用的最多的是黄渤和徐峥,黄渤9次,支持度100%,徐峥7次,支持度78%,('徐峥', '黄渤') 同时出现7次,置信度为100%,看来有徐峥,必有黄渤,真是宁浩必请的黄金搭档,且是一对好基友。

当然,这个数据量比较小,我们基本上肉眼也能看出来,这里只是提供一个分析案例和基础方法,巩固下基础知识,算是开胃菜,大规模的数据,人眼无法直接感知的时候,算法的挖掘与发现,就显得特别有意义了,后续会陆续推出相应的文章。

到此这篇关于基于Python代码实现Apriori 关联规则算法的文章就介绍到这了,更多相关python关联规则算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python 实现关联规则算法Apriori的示例

    首先导入包含apriori算法的mlxtend库, pip install mlxtend 调用apriori进行关联规则分析,具体代码如下,其中数据集选取本博客 "机器学习算法--关联规则" 中的例子,可进行参考,设置最小支持度(min_support)为0.4,最小置信度(min_threshold)为0.1, 最小提升度(lift)为1.0,对数据集进行关联规则分析, from mlxtend.preprocessing import TransactionEncoder fro

  • 详解Python 关联规则分析

    1. 关联规则 大家可能听说过用于宣传数据挖掘的一个案例:啤酒和尿布:据说是沃尔玛超市在分析顾客的购买记录时,发现许多客户购买啤酒的同时也会购买婴儿尿布,于是超市调整了啤酒和尿布的货架摆放,让这两个品类摆放在一起:结果这两个品类的销量都有明显的增长:分析原因是很多刚生小孩的男士在购买的啤酒时,会顺手带一些婴幼儿用品. 不论这个案例是否是真实的,案例中分析顾客购买记录的方式就是关联规则分析法Association Rules. 关联规则分析也被称为购物篮分析,用于分析数据集各项之间的关联关系. 1

  • 总结分析python数据化运营关联规则

    目录 内容介绍 一般应用场景 关联规则实现 关联规则应用举例 内容介绍 以 Python 使用 关联规则 简单举例应用关联规则分析. 关联规则 也被称为购物篮分析,用于分析数据集各项之间的关联关系. 一般应用场景 关联规则分析:最早的案例啤酒和尿布:据说是沃尔玛超市在分析顾客的购买记录时,发现许多客户购买啤酒的同时也会购买婴儿尿布,于是超市调整了啤酒和尿布的货架摆放,让这两个品类摆放在一起:结果这两个品类的销量都有明显的增长:分析原因是很多刚生小孩的男士在购买的啤酒时,会顺手带一些婴幼儿用品.

  • 基于Python代码实现Apriori 关联规则算法

    目录 一.关联规则概述 二.应用场景举例 1.股票涨跌预测 2.视频.音乐.图书等推荐 3.打车路线预测(考虑时空) 4.风控策略自动化挖掘 三.3个最重要的概念 1.支持度 2.置信度 3.提升度 4. 频繁项集 四.Python算法介绍 五.挖掘实例 一.关联规则概述 1993年,Agrawal等人在首先提出关联规则概念,迄今已经差不多30年了,在各种算法层出不穷的今天,这算得上是老古董了,比很多人的年纪还大,往往是数据挖掘的入门算法,但深入研究的不多,尤其在风控领域,有着极其重要的应用潜力

  • 基于Python代码编辑器的选用(详解)

    Python开发环境配置好了,但发现自带的代码编辑器貌似用着有点不大习惯啊,所以咱们就找一个"好用的"代码编辑器吧,网上搜了一下资料,Python常用的编辑器有如下一些: 1. Sublime Text 2. Vim 3. PyScripter 4. PyCharm 5. Eclipse with PyDev 6. Emacs 7. Komodo Edit 8. Wing 9. The Eric Python IDE 10. Interactive Editor for Python

  • 基于python代码实现简易滤除数字的方法

    如果想从一个含有数字,汉字,字母的列表中滤除仅含有数字的字符,当然可以采取正则表达式来完成,但是有点太麻烦了,因此可以采用一个比较巧妙的方式: 1.正则表达式解决 import re L = [u'小明', 'xiaohong', '12', 'adf12', '14'] for i in range(len(L)): if re.findall(r'^[^\d]\w+',L[i]): print re.findall(r'^\w+$',L[i])[0] elif isinstance(L[i]

  • 基于python代码批量处理图片resize

    出差做PPT,要放一些图片上去,原图太大必须resize,十几张图片懒得一一处理了,最近正好在学python,最好的学习方式就是使用,于是写了一个批量处理图片resize的代码,在写的过程中,熟悉了python自己的os模块和opencv的cv2模块. 代码如下 // python code import os import cv2 ''' 设置图片路径,该路径下包含了14张jpg格式的照片,名字依次为0.jpg, 1.jpg, 2.jpg,...,14.jpg''' DATADIR="D:\C

  • 基于 Python 实践感知器分类算法

    Perceptron是用于二进制分类任务的线性机器学习算法.它可以被认为是人工神经网络的第一种和最简单的类型之一.绝对不是"深度"学习,而是重要的组成部分.与逻辑回归相似,它可以快速学习两类分类任务在特征空间中的线性分离,尽管与逻辑回归不同,它使用随机梯度下降优化算法学习并且不预测校准概率. 在本教程中,您将发现Perceptron分类机器学习算法.完成本教程后,您将知道: Perceptron分类器是一种线性算法,可以应用于二进制分类任务. 如何使用带有Scikit-Learn的Pe

  • 如何基于Python代码实现高精度免费OCR工具

    近期Github开源了一款基于Python开发.名为Textshot的截图工具,刚开源不到半个月已经500+Star. 这两天抽空看了一下Textshot的源码,的确是一个值得介绍的项目. 相对于大多数OCR工具复杂工程.差强人意的效果,Textshot具有明显的优势, 项目简单 技术点丰富 项目简单 Textshot整个项目只有1个Python文件.139行代码,没有复杂的第三方库应用,也不涉及过多后端算法的调用. 技术点丰富 Textshot这个项目虽然只有短短的139行代码,但是,却涉及P

  • 以Python代码实例展示kNN算法的实际运用

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. kNN方法在类别决策时,只与极少量的相邻样本有关.由于kNN方法主

  • Python代码实现粒子群算法图文详解

    目录 1.引言 2.算法的具体描述: 2.1原理 2.2标准粒子群算法流程 3.代码案例 3.1问题 3.2绘图 3.3计算适应度 3.4更新速度 3.5更新粒子位置 3.6主要算法过程 结果 总结 1.引言 粒子群优化算法起源于对鸟群觅食活动的分析.鸟群在觅食的时候通常会毫无征兆的聚拢,分散,以及改变飞行的轨迹,但是在不同个体之间会十分默契的保持距离.所以粒子群优化算法模拟鸟类觅食的过程,将待求解问题的搜索空间看作是鸟类飞行的空间,将每只鸟抽象成一个没有质量和大小的粒子,用这个粒子来表示待求解

  • 仅利用30行Python代码来展示X算法

    假如你对数独解法感兴趣,你可能听说过精确覆盖问题.给定全集 X 和 X 的子集的集合 Y ,存在一个 Y 的子集 Y*,使得 Y* 构成 X 的一种分割. 这儿有个Python写的例子. X = {1, 2, 3, 4, 5, 6, 7} Y = { 'A': [1, 4, 7], 'B': [1, 4], 'C': [4, 5, 7], 'D': [3, 5, 6], 'E': [2, 3, 6, 7], 'F': [2, 7]} 这个例子的唯一解是['B', 'D', 'F']. 精确覆盖问

  • 基于Python实现迪杰斯特拉和弗洛伊德算法

    图搜索之基于Python的迪杰斯特拉算法和弗洛伊德算法,供大家参考,具体内容如下 Djstela算法 #encoding=UTF-8 MAX=9 ''' Created on 2016年9月28日 @author: sx ''' b=999 G=[[0,1,5,b,b,b,b,b,b],\ [1,0,3,7,5,b,b,b,b],\ [5,3,0,b,1,7,b,b,b],\ [b,7,b,0,2,b,3,b,b],\ [b,5,1,2,0,3,6,9,b],\ [b,b,7,b,3,0,b,5

随机推荐