基于Python实现简单的人脸识别系统

目录
  • 前言
  • 基本原理
  • 代码实现
    • 创建虚拟环境
    • 安装必要的库

前言

最近又多了不少朋友关注,先在这里谢谢大家。关注我的朋友大多数都是大学生,而且我简单看了一下,低年级的大学生居多,大多数都是为了完成课程设计,作为一个过来人,还是希望大家平时能多抽出点时间学习一下,这种临时抱佛脚的策略要少用嗷。今天我们来python实现一个人脸识别系统,主要是借助了dlib这个库,相当于我们直接调用现成的库来进行人脸识别,就省去了之前教程中的数据收集和模型训练的步骤了。

B站视频:用300行代码实现人脸识别系统_哔哩哔哩_bilibili

码云地址:face_dlib_py37_42: 用300行代码开发一个人脸识别系统-42 (gitee.com)

基本原理

人脸识别和目标检测这些还不太一样,比如大家传统的训练一个目标检测模型,你只有对这个目标训练了之后,你的模型才能找到这样的目标,比如你的目标检测模型如果是检测植物的,那显然就不能检测动物。但是人脸识别就不一样,以你的手机为例,你发现你只录入了一次你的人脸信息,不需要训练,他就能准确的识别你,这里识别的原理是通过人脸识别的模型提取你脸部的特征向量,然后将实时检测到的你的人脸同数据库中保存的人脸进行比对,如果相似度超过一定的阈值之后,就认为比对成功。不过我这里说的只是简化版本的人脸识别,现在手机和门禁这些要复杂和安全的多,也不是简单平面上的人脸识别。

总结下来可以分为下面的步骤:

1.上传人脸到数据库

2.人脸检测

3.数据库比对并返回结果

这里我做了一个简答的示意图,可以帮助大家简单理解一下。

代码实现

废话不多说,这里就是我们的代码实现,代码我已经上传到码云,大家直接下载就行,地址就在博客开头。

不会安装python环境的兄弟请看这里:如何在pycharm中配置anaconda的虚拟环境

创建虚拟环境

创建虚拟环境前请大家先下载博客开头的码云源码到本地。

本次我们需要使用到python3.7的虚拟环境,命令如下:

conda create -n face python==3.7.3
conda activate face

安装必要的库

pip install -r requirements.txt

愉快地开始你的人脸识别吧!

执行下面的主文件即可

python UI.py

或者在pycharm中按照下面的方式直接运行即可

首先将你需要识别的人脸上传到数据库中

通过第二个视频检测功能识别实时的人脸

详细的代码如下:

# -*- coding: utf-8 -*-
"""
-------------------------------------------------
Project Name: yolov5-jungong
File Name: window.py.py
Author: chenming
Create Date: 2021/11/8
Description:图形化界面,可以检测摄像头、视频和图片文件
-------------------------------------------------
"""
# 应该在界面启动的时候就将模型加载出来,设置tmp的目录来放中间的处理结果
import shutil
import PyQt5.QtCore
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
import threading
import argparse
import os
import sys
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
import os.path as osp
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync

# 添加一个关于界面
# 窗口主类
class MainWindow(QTabWidget):
    # 基本配置不动,然后只动第三个界面
    def __init__(self):
        # 初始化界面
        super().__init__()
        self.setWindowTitle('Target detection system')
        self.resize(1200, 800)
        self.setWindowIcon(QIcon("images/UI/lufei.png"))
        # 图片读取进程
        self.output_size = 480
        self.img2predict = ""
        self.device = 'cpu'
        # # 初始化视频读取线程
        self.vid_source = '0'  # 初始设置为摄像头
        self.stopEvent = threading.Event()
        self.webcam = True
        self.stopEvent.clear()
        self.model = self.model_load(weights="runs/train/exp_yolov5s/weights/best.pt",
                                     device="cpu")  # todo 指明模型加载的位置的设备
        self.initUI()
        self.reset_vid()

    '''
    ***模型初始化***
    '''
    @torch.no_grad()
    def model_load(self, weights="",  # model.pt path(s)
                   device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
                   half=False,  # use FP16 half-precision inference
                   dnn=False,  # use OpenCV DNN for ONNX inference
                   ):
        device = select_device(device)
        half &= device.type != 'cpu'  # half precision only supported on CUDA
        device = select_device(device)
        model = DetectMultiBackend(weights, device=device, dnn=dnn)
        stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
        # Half
        half &= pt and device.type != 'cpu'  # half precision only supported by PyTorch on CUDA
        if pt:
            model.model.half() if half else model.model.float()
        print("模型加载完成!")
        return model

    '''
    ***界面初始化***
    '''
    def initUI(self):
        # 图片检测子界面
        font_title = QFont('楷体', 16)
        font_main = QFont('楷体', 14)
        # 图片识别界面, 两个按钮,上传图片和显示结果
        img_detection_widget = QWidget()
        img_detection_layout = QVBoxLayout()
        img_detection_title = QLabel("图片识别功能")
        img_detection_title.setFont(font_title)
        mid_img_widget = QWidget()
        mid_img_layout = QHBoxLayout()
        self.left_img = QLabel()
        self.right_img = QLabel()
        self.left_img.setPixmap(QPixmap("images/UI/up.jpeg"))
        self.right_img.setPixmap(QPixmap("images/UI/right.jpeg"))
        self.left_img.setAlignment(Qt.AlignCenter)
        self.right_img.setAlignment(Qt.AlignCenter)
        mid_img_layout.addWidget(self.left_img)
        mid_img_layout.addStretch(0)
        mid_img_layout.addWidget(self.right_img)
        mid_img_widget.setLayout(mid_img_layout)
        up_img_button = QPushButton("上传图片")
        det_img_button = QPushButton("开始检测")
        up_img_button.clicked.connect(self.upload_img)
        det_img_button.clicked.connect(self.detect_img)
        up_img_button.setFont(font_main)
        det_img_button.setFont(font_main)
        up_img_button.setStyleSheet("QPushButton{color:white}"
                                    "QPushButton:hover{background-color: rgb(2,110,180);}"
                                    "QPushButton{background-color:rgb(48,124,208)}"
                                    "QPushButton{border:2px}"
                                    "QPushButton{border-radius:5px}"
                                    "QPushButton{padding:5px 5px}"
                                    "QPushButton{margin:5px 5px}")
        det_img_button.setStyleSheet("QPushButton{color:white}"
                                     "QPushButton:hover{background-color: rgb(2,110,180);}"
                                     "QPushButton{background-color:rgb(48,124,208)}"
                                     "QPushButton{border:2px}"
                                     "QPushButton{border-radius:5px}"
                                     "QPushButton{padding:5px 5px}"
                                     "QPushButton{margin:5px 5px}")
        img_detection_layout.addWidget(img_detection_title, alignment=Qt.AlignCenter)
        img_detection_layout.addWidget(mid_img_widget, alignment=Qt.AlignCenter)
        img_detection_layout.addWidget(up_img_button)
        img_detection_layout.addWidget(det_img_button)
        img_detection_widget.setLayout(img_detection_layout)

        # todo 视频识别界面
        # 视频识别界面的逻辑比较简单,基本就从上到下的逻辑
        vid_detection_widget = QWidget()
        vid_detection_layout = QVBoxLayout()
        vid_title = QLabel("视频检测功能")
        vid_title.setFont(font_title)
        self.vid_img = QLabel()
        self.vid_img.setPixmap(QPixmap("images/UI/up.jpeg"))
        vid_title.setAlignment(Qt.AlignCenter)
        self.vid_img.setAlignment(Qt.AlignCenter)
        self.webcam_detection_btn = QPushButton("摄像头实时监测")
        self.mp4_detection_btn = QPushButton("视频文件检测")
        self.vid_stop_btn = QPushButton("停止检测")
        self.webcam_detection_btn.setFont(font_main)
        self.mp4_detection_btn.setFont(font_main)
        self.vid_stop_btn.setFont(font_main)
        self.webcam_detection_btn.setStyleSheet("QPushButton{color:white}"
                                                "QPushButton:hover{background-color: rgb(2,110,180);}"
                                                "QPushButton{background-color:rgb(48,124,208)}"
                                                "QPushButton{border:2px}"
                                                "QPushButton{border-radius:5px}"
                                                "QPushButton{padding:5px 5px}"
                                                "QPushButton{margin:5px 5px}")
        self.mp4_detection_btn.setStyleSheet("QPushButton{color:white}"
                                             "QPushButton:hover{background-color: rgb(2,110,180);}"
                                             "QPushButton{background-color:rgb(48,124,208)}"
                                             "QPushButton{border:2px}"
                                             "QPushButton{border-radius:5px}"
                                             "QPushButton{padding:5px 5px}"
                                             "QPushButton{margin:5px 5px}")
        self.vid_stop_btn.setStyleSheet("QPushButton{color:white}"
                                        "QPushButton:hover{background-color: rgb(2,110,180);}"
                                        "QPushButton{background-color:rgb(48,124,208)}"
                                        "QPushButton{border:2px}"
                                        "QPushButton{border-radius:5px}"
                                        "QPushButton{padding:5px 5px}"
                                        "QPushButton{margin:5px 5px}")
        self.webcam_detection_btn.clicked.connect(self.open_cam)
        self.mp4_detection_btn.clicked.connect(self.open_mp4)
        self.vid_stop_btn.clicked.connect(self.close_vid)
        # 添加组件到布局上
        vid_detection_layout.addWidget(vid_title)
        vid_detection_layout.addWidget(self.vid_img)
        vid_detection_layout.addWidget(self.webcam_detection_btn)
        vid_detection_layout.addWidget(self.mp4_detection_btn)
        vid_detection_layout.addWidget(self.vid_stop_btn)
        vid_detection_widget.setLayout(vid_detection_layout)

        # todo 关于界面
        about_widget = QWidget()
        about_layout = QVBoxLayout()
        about_title = QLabel('欢迎使用目标检测系统\n\n 提供付费指导:有需要的好兄弟加下面的QQ即可')  # todo 修改欢迎词语
        about_title.setFont(QFont('楷体', 18))
        about_title.setAlignment(Qt.AlignCenter)
        about_img = QLabel()
        about_img.setPixmap(QPixmap('images/UI/qq.png'))
        about_img.setAlignment(Qt.AlignCenter)

        # label4.setText("<a href='https://oi.wiki/wiki/学习率的调整'>如何调整学习率</a>")
        label_super = QLabel()  # todo 更换作者信息
        label_super.setText("<a href='https://blog.csdn.net/ECHOSON'>或者你可以在这里找到我-->肆十二</a>")
        label_super.setFont(QFont('楷体', 16))
        label_super.setOpenExternalLinks(True)
        # label_super.setOpenExternalLinks(True)
        label_super.setAlignment(Qt.AlignRight)
        about_layout.addWidget(about_title)
        about_layout.addStretch()
        about_layout.addWidget(about_img)
        about_layout.addStretch()
        about_layout.addWidget(label_super)
        about_widget.setLayout(about_layout)

        self.left_img.setAlignment(Qt.AlignCenter)
        self.addTab(img_detection_widget, '图片检测')
        self.addTab(vid_detection_widget, '视频检测')
        self.addTab(about_widget, '联系我')
        self.setTabIcon(0, QIcon('images/UI/lufei.png'))
        self.setTabIcon(1, QIcon('images/UI/lufei.png'))
        self.setTabIcon(2, QIcon('images/UI/lufei.png'))

    '''
    ***上传图片***
    '''
    def upload_img(self):
        # 选择录像文件进行读取
        fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.jpg *.png *.tif *.jpeg')
        if fileName:
            suffix = fileName.split(".")[-1]
            save_path = osp.join("images/tmp", "tmp_upload." + suffix)
            shutil.copy(fileName, save_path)
            # 应该调整一下图片的大小,然后统一防在一起
            im0 = cv2.imread(save_path)
            resize_scale = self.output_size / im0.shape[0]
            im0 = cv2.resize(im0, (0, 0), fx=resize_scale, fy=resize_scale)
            cv2.imwrite("images/tmp/upload_show_result.jpg", im0)
            # self.right_img.setPixmap(QPixmap("images/tmp/single_result.jpg"))
            self.img2predict = fileName
            self.left_img.setPixmap(QPixmap("images/tmp/upload_show_result.jpg"))
            # todo 上传图片之后右侧的图片重置,
            self.right_img.setPixmap(QPixmap("images/UI/right.jpeg"))

    '''
    ***检测图片***
    '''
    def detect_img(self):
        model = self.model
        output_size = self.output_size
        source = self.img2predict  # file/dir/URL/glob, 0 for webcam
        imgsz = 640  # inference size (pixels)
        conf_thres = 0.25  # confidence threshold
        iou_thres = 0.45  # NMS IOU threshold
        max_det = 1000  # maximum detections per image
        device = self.device  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img = False  # show results
        save_txt = False  # save results to *.txt
        save_conf = False  # save confidences in --save-txt labels
        save_crop = False  # save cropped prediction boxes
        nosave = False  # do not save images/videos
        classes = None  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms = False  # class-agnostic NMS
        augment = False  # ugmented inference
        visualize = False  # visualize features
        line_thickness = 3  # bounding box thickness (pixels)
        hide_labels = False  # hide labels
        hide_conf = False  # hide confidences
        half = False  # use FP16 half-precision inference
        dnn = False  # use OpenCV DNN for ONNX inference
        print(source)
        if source == "":
            QMessageBox.warning(self, "请上传", "请先上传图片再进行检测")
        else:
            source = str(source)
            device = select_device(self.device)
            webcam = False
            stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
            imgsz = check_img_size(imgsz, s=stride)  # check image size
            save_img = not nosave and not source.endswith('.txt')  # save inference images
            # Dataloader
            if webcam:
                view_img = check_imshow()
                cudnn.benchmark = True  # set True to speed up constant image size inference
                dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit)
                bs = len(dataset)  # batch_size
            else:
                dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt and not jit)
                bs = 1  # batch_size
            vid_path, vid_writer = [None] * bs, [None] * bs
            # Run inference
            if pt and device.type != 'cpu':
                model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters())))  # warmup
            dt, seen = [0.0, 0.0, 0.0], 0
            for path, im, im0s, vid_cap, s in dataset:
                t1 = time_sync()
                im = torch.from_numpy(im).to(device)
                im = im.half() if half else im.float()  # uint8 to fp16/32
                im /= 255  # 0 - 255 to 0.0 - 1.0
                if len(im.shape) == 3:
                    im = im[None]  # expand for batch dim
                t2 = time_sync()
                dt[0] += t2 - t1
                # Inference
                # visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
                pred = model(im, augment=augment, visualize=visualize)
                t3 = time_sync()
                dt[1] += t3 - t2
                # NMS
                pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
                dt[2] += time_sync() - t3
                # Second-stage classifier (optional)
                # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
                # Process predictions
                for i, det in enumerate(pred):  # per image
                    seen += 1
                    if webcam:  # batch_size >= 1
                        p, im0, frame = path[i], im0s[i].copy(), dataset.count
                        s += f'{i}: '
                    else:
                        p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
                    p = Path(p)  # to Path
                    s += '%gx%g ' % im.shape[2:]  # print string
                    gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                    imc = im0.copy() if save_crop else im0  # for save_crop
                    annotator = Annotator(im0, line_width=line_thickness, example=str(names))
                    if len(det):
                        # Rescale boxes from img_size to im0 size
                        det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                        # Print results
                        for c in det[:, -1].unique():
                            n = (det[:, -1] == c).sum()  # detections per class
                            s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                        # Write results
                        for *xyxy, conf, cls in reversed(det):
                            if save_txt:  # Write to file
                                xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(
                                    -1).tolist()  # normalized xywh
                                line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                                # with open(txt_path + '.txt', 'a') as f:
                                #     f.write(('%g ' * len(line)).rstrip() % line + '\n')

                            if save_img or save_crop or view_img:  # Add bbox to image
                                c = int(cls)  # integer class
                                label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                                annotator.box_label(xyxy, label, color=colors(c, True))
                                # if save_crop:
                                #     save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg',
                                #                  BGR=True)
                    # Print time (inference-only)
                    LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
                    # Stream results
                    im0 = annotator.result()
                    # if view_img:
                    #     cv2.imshow(str(p), im0)
                    #     cv2.waitKey(1)  # 1 millisecond
                    # Save results (image with detections)
                    resize_scale = output_size / im0.shape[0]
                    im0 = cv2.resize(im0, (0, 0), fx=resize_scale, fy=resize_scale)
                    cv2.imwrite("images/tmp/single_result.jpg", im0)
                    # 目前的情况来看,应该只是ubuntu下会出问题,但是在windows下是完整的,所以继续
                    self.right_img.setPixmap(QPixmap("images/tmp/single_result.jpg"))

    # 视频检测,逻辑基本一致,有两个功能,分别是检测摄像头的功能和检测视频文件的功能,先做检测摄像头的功能。

    '''
    ### 界面关闭事件 ###
    '''
    def closeEvent(self, event):
        reply = QMessageBox.question(self,
                                     'quit',
                                     "Are you sure?",
                                     QMessageBox.Yes | QMessageBox.No,
                                     QMessageBox.No)
        if reply == QMessageBox.Yes:
            self.close()
            event.accept()
        else:
            event.ignore()

    '''
    ### 视频关闭事件 ###
    '''

    def open_cam(self):
        self.webcam_detection_btn.setEnabled(False)
        self.mp4_detection_btn.setEnabled(False)
        self.vid_stop_btn.setEnabled(True)
        self.vid_source = '0'
        self.webcam = True
        th = threading.Thread(target=self.detect_vid)
        th.start()

    '''
    ### 开启视频文件检测事件 ###
    '''

    def open_mp4(self):
        fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.mp4 *.avi')
        if fileName:
            self.webcam_detection_btn.setEnabled(False)
            self.mp4_detection_btn.setEnabled(False)
            # self.vid_stop_btn.setEnabled(True)
            self.vid_source = fileName
            self.webcam = False
            th = threading.Thread(target=self.detect_vid)
            th.start()

    '''
    ### 视频开启事件 ###
    '''

    # 视频和摄像头的主函数是一样的,不过是传入的source不同罢了
    def detect_vid(self):
        # pass
        model = self.model
        output_size = self.output_size
        # source = self.img2predict  # file/dir/URL/glob, 0 for webcam
        imgsz = 640  # inference size (pixels)
        conf_thres = 0.25  # confidence threshold
        iou_thres = 0.45  # NMS IOU threshold
        max_det = 1000  # maximum detections per image
        # device = self.device  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img = False  # show results
        save_txt = False  # save results to *.txt
        save_conf = False  # save confidences in --save-txt labels
        save_crop = False  # save cropped prediction boxes
        nosave = False  # do not save images/videos
        classes = None  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms = False  # class-agnostic NMS
        augment = False  # ugmented inference
        visualize = False  # visualize features
        line_thickness = 3  # bounding box thickness (pixels)
        hide_labels = False  # hide labels
        hide_conf = False  # hide confidences
        half = False  # use FP16 half-precision inference
        dnn = False  # use OpenCV DNN for ONNX inference
        source = str(self.vid_source)
        webcam = self.webcam
        device = select_device(self.device)
        stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
        imgsz = check_img_size(imgsz, s=stride)  # check image size
        save_img = not nosave and not source.endswith('.txt')  # save inference images
        # Dataloader
        if webcam:
            view_img = check_imshow()
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit)
            bs = len(dataset)  # batch_size
        else:
            dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt and not jit)
            bs = 1  # batch_size
        vid_path, vid_writer = [None] * bs, [None] * bs
        # Run inference
        if pt and device.type != 'cpu':
            model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters())))  # warmup
        dt, seen = [0.0, 0.0, 0.0], 0
        for path, im, im0s, vid_cap, s in dataset:
            t1 = time_sync()
            im = torch.from_numpy(im).to(device)
            im = im.half() if half else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim
            t2 = time_sync()
            dt[0] += t2 - t1
            # Inference
            # visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(im, augment=augment, visualize=visualize)
            t3 = time_sync()
            dt[1] += t3 - t2
            # NMS
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
            dt[2] += time_sync() - t3
            # Second-stage classifier (optional)
            # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
            # Process predictions
            for i, det in enumerate(pred):  # per image
                seen += 1
                if webcam:  # batch_size >= 1
                    p, im0, frame = path[i], im0s[i].copy(), dataset.count
                    s += f'{i}: '
                else:
                    p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
                p = Path(p)  # to Path
                # save_path = str(save_dir / p.name)  # im.jpg
                # txt_path = str(save_dir / 'labels' / p.stem) + (
                #     '' if dataset.mode == 'image' else f'_{frame}')  # im.txt
                s += '%gx%g ' % im.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                imc = im0.copy() if save_crop else im0  # for save_crop
                annotator = Annotator(im0, line_width=line_thickness, example=str(names))
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        if save_txt:  # Write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(
                                -1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                            # with open(txt_path + '.txt', 'a') as f:
                            #     f.write(('%g ' * len(line)).rstrip() % line + '\n')

                        if save_img or save_crop or view_img:  # Add bbox to image
                            c = int(cls)  # integer class
                            label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                            annotator.box_label(xyxy, label, color=colors(c, True))
                            # if save_crop:
                            #     save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg',
                            #                  BGR=True)
                # Print time (inference-only)
                LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
                # Stream results
                # Save results (image with detections)
                im0 = annotator.result()
                frame = im0
                resize_scale = output_size / frame.shape[0]
                frame_resized = cv2.resize(frame, (0, 0), fx=resize_scale, fy=resize_scale)
                cv2.imwrite("images/tmp/single_result_vid.jpg", frame_resized)
                self.vid_img.setPixmap(QPixmap("images/tmp/single_result_vid.jpg"))
                # self.vid_img
                # if view_img:
                # cv2.imshow(str(p), im0)
                # self.vid_img.setPixmap(QPixmap("images/tmp/single_result_vid.jpg"))
                # cv2.waitKey(1)  # 1 millisecond
            if cv2.waitKey(25) & self.stopEvent.is_set() == True:
                self.stopEvent.clear()
                self.webcam_detection_btn.setEnabled(True)
                self.mp4_detection_btn.setEnabled(True)
                self.reset_vid()
                break
        # self.reset_vid()

    '''
    ### 界面重置事件 ###
    '''

    def reset_vid(self):
        self.webcam_detection_btn.setEnabled(True)
        self.mp4_detection_btn.setEnabled(True)
        self.vid_img.setPixmap(QPixmap("images/UI/up.jpeg"))
        self.vid_source = '0'
        self.webcam = True

    '''
    ### 视频重置事件 ###
    '''

    def close_vid(self):
        self.stopEvent.set()
        self.reset_vid()

if __name__ == "__main__":
    app = QApplication(sys.argv)
    mainWindow = MainWindow()
    mainWindow.show()
    sys.exit(app.exec_())

以上就是基于Python实现简单的人脸识别系统的详细内容,更多关于Python人脸识别系统的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python实现人脸识别

    使用到的库: dlib+Opencv python版本: 3.8 编译环境: Jupyter Notebook (Anaconda3) 0.Dlib人脸特征检测原理 提取特征点:首选抓取多张图片,从中获取特征数据集和平均特征值然后写入 csv 文件 - 计算特征数据集的欧式距离作对比:首先使用Opencv库将摄像头中的人脸框出来,再将摄像头中采取到的人脸特征值与数据集中的每个人的特征均值作对比,选取最接近(欧氏距离最小)的值,将其标注为欧氏距离最小的数据集的人名 一.构建人脸特征数据集 安装Dl

  • python基于opencv实现人脸识别

    将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别. 识别图像中的人脸 #coding:utf-8 import cv2 as cv # 读取原始图像 img = cv.imread('face.png') # 调用熟悉的人脸分类器 识别特征类型 # 人脸 - haarcascade_frontalface_default.xml # 人眼 - haarcascade_eye.xml # 微笑 - haarcascad

  • 使用Python实现简单的人脸识别功能(附源码)

    目录 前言 一.首先 二.接下来 1.对照人脸获取 2. 通过算法建立对照模型 3.识别 前言 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比

  • 基于python3+OpenCV实现人脸和眼睛识别

    基于python3+OpenCV的人脸和眼睛识别,供大家参考,具体内容如下 一.OpenCV人脸检测的xml文件下载 人脸检测和眼睛检测要用到haarcascade_eye.xml和haarcascade_frontalface_default.xml这两个文件,这两个文件可以在OpenCV的官网下载,具体下载方法如下: 1.打开要下载的xml文件,如下图: 2.点击Raw: 3.在新打开的网页中右击,选择另存为,最后保存就可以了. 二.人脸检测文件的导入以及图片的处理 接下来就可以在代码中载入

  • 基于Python搭建人脸识别考勤系统

    目录 介绍 人脸识别的实际应用 构建人脸识别系统的步骤 安装库 导入库 加载图像 查找人脸位置并绘制边界框 为人脸识别训练图像 构建人脸识别系统 人脸识别系统面临的挑战 结论 介绍 在本文中,你将学习如何使用 Python 构建人脸识别系统.人脸识别比人脸检测更进一步.在人脸检测中,我们只检测人脸在图像中的位置,但在人脸识别中,我们制作了一个可以识别人的系统. "人脸识别是验证或识别图片或视频中的人的挑战.大型科技巨头仍在努力打造更快.更准确的人脸识别模型." 人脸识别的实际应用 人脸

  • 用Python实现简单的人脸识别功能步骤详解

    前言 让我的电脑认识我,我的电脑只有认识我,才配称之为我的电脑! 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花

  • 基于Python实现简单的人脸识别系统

    目录 前言 基本原理 代码实现 创建虚拟环境 安装必要的库 前言 最近又多了不少朋友关注,先在这里谢谢大家.关注我的朋友大多数都是大学生,而且我简单看了一下,低年级的大学生居多,大多数都是为了完成课程设计,作为一个过来人,还是希望大家平时能多抽出点时间学习一下,这种临时抱佛脚的策略要少用嗷.今天我们来python实现一个人脸识别系统,主要是借助了dlib这个库,相当于我们直接调用现成的库来进行人脸识别,就省去了之前教程中的数据收集和模型训练的步骤了. B站视频:用300行代码实现人脸识别系统_哔

  • 基于opencv和pillow实现人脸识别系统(附demo)

    目录 一.人脸检测和数据收集 二.训练识别器 三.人脸识别和显示 本文不涉及分类器.训练识别器等算法原理,仅包含对其应用(未来我也会写自己对机器学习算法原理的一些观点和了解) 首先我们需要知道的是利用现有框架做一个人脸识别系统并不难,然后就开始我们的系统开发吧. 我们的系统主要分为三个部分,然后我还会提出对补获图片不能添加中文的解决方案.我们需要完成的任务:1.人脸检测和数据收集2.训练识别器3.人脸识别和显示 在读此篇文章之前我相信你已经做了python环境部署和opencv模块的下载安装工作

  • Python基于Dlib的人脸识别系统的实现

    之前已经介绍过人脸识别的基础概念,以及基于opencv的实现方式,今天,我们使用dlib来提取128维的人脸嵌入,并使用k临近值方法来实现人脸识别. 人脸识别系统的实现流程与之前是一样的,只是这里我们借助了dlib和face_recognition这两个库来实现.face_recognition是对dlib库的包装,使对dlib的使用更方便.所以首先要安装这2个库. pip3 install dlib pip3 install face_recognition 然后,还要安装imutils库 p

  • 简单的Python人脸识别系统

    案例一 导入图片 思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口 # 1.导入库 import cv2 # 2.加载图片 img = cv2.imread('a.png') # 3.创建窗口 cv2.namedWindow('window 1 haha') # 4.显示图片 cv2.imshow('window 1',img) # 5.暂停窗口 cv2.waitKey(0) # 6.关闭窗口 cv2.destroyAllWindows() 案例二 在图片

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • 基于Python实现简易的植物识别小系统

    导语 "  花草树木 皆有呈名 热爱自然,从认识自然开始 " 现在的植物爱好者,遇到不认得的植物.怎么办呢? 前几天去逛商场,一进商城一一一一门口的花店吸引了我的注意:摆放在店门口的各色鲜花植物花卉真的特别好看! 忍不住进门逛了一圈,发现我真的不认识,种类太多,对花卉的品种了解颇少. 回来之后找到了2款简单好用的植物识别APP一一一伴侣跟形色蛮好用的! 闲着也是闲着:默默用Python编写了一款简单的植物识别系统给大家正好la~ 正文 1)环境安装 本文用到的环境:Python3.7 

  • 基于Python实现智能停车场车牌识别计费系统

    目录 项目结构 主要代码 实现效果 前段时间练习过的一个小项目,今天再看看,记录一下~ 项目结构 说明: datefile文件夹:保存车辆信息表的xlsx文件 file文件夹:保存图片文件夹.ic_launcher.jpg是窗体的右上角图标文件:income.png是实现收入统计的柱状图(下一篇文章实现):key.txt是使用百度的图片识别AI接口申请的key:test.jpg保存的是摄像头抓取的图片 venv文件夹:项目所需要的各种模块,即项目运行环境 btn.py文件:按钮模块 main.p

  • PHP使用Face++接口开发微信公众平台人脸识别系统的方法

    本文实例讲述了PHP使用Face++接口开发微信公众平台人脸识别系统的方法.分享给大家供大家参考.具体如下: 效果图如下: 具体步骤如下: 首先,先登录Face++的官网注册账号:官网链接 注册之后会获取到api_secret和api_key,这些在调用接口的时候需要用到. 然后接下来的就是使用PHP脚本调用API了. 在使用PHP开发微信公共平台的时候,推荐使用Github上的一款不错的框架:wechat-php-sdk 对于微信的常用接口做了一些封装,核心文件wechat.class.php

随机推荐