利用Hadoop实现求共同好友的示例详解

目录
  • 前言
  • 业务分析
  • 实现思路分析
  • 编码实现
    • 1、第一个map类
    • 2、第一个Reduce类
    • 3、第一个Job类
    • 4、第二个map类
    • 5、第二个Reducer类
    • 6、第二个Job类

前言

在很多社交APP中,比如大家熟悉的QQ好友列表中,打开会话框,经常可以看到下面有一栏共同好友的推荐列表,用户通过这种方式,可以添加潜在的关联好友

这种功能该如何实现呢?对redis比较了解的同学应该能很快想到,可以使用redis来实现这个功能。没错,redis确实是个不错的可以实现这个功能的方案。

但redis的实现有一定的局限性,因为redis存储和数据和计算时需要耗费较多的内存资源,设想一下,像腾讯QQ这样的规模,如果用这种方式做的话,估计Redis服务器的投入成本将是一笔不小的开销。

利用hadoop中的MapReduce同样可以实现这个功能,该如何实现呢?

业务分析

下面是原始的数据文件,第一栏可理解为本人,第二行为该用户的好友列表,以逗号分割,比如A用户的好友包括:B,C,D,F,E,O这几个,后面的行依次类推

A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J

现在的需求是:通过原始的数据文件,输出该文件中所有用户中哪些人两两之间存在共同好友并输出,格式如下:

A-B C,E
A-C    F,D
A-D    E,F
......

实现思路分析

步骤一:将原始数据拆分为如下格式

通过这一步,得到一组K/V,可以清晰的反映出一个用户的所有好友

B:A            #B是A的好友
C:A            #C是A的好友
D:A            #D是A的好友
F:A
E:A
O:A

A:B
C:B
E:B
K:B

F:C
A:C
D:C
I:C

B:E
C:E
D:E
M:E
L:E

步骤二、对第一步的数据进一步处理成如下格式

从第一步格式完毕后的数据,可以很明显看出并总结出一个规律,那就是左边那些用户的好友列表,以C用户为例,可以看出C这个用户有A,B,E三个好友,反过来讲,ABE这三个用户,他们有一个共同的好友A

其他的类推进行理解

C  A-B-E  #C是A和B和E的共同好友
D  A-C      #D是A和B的共同好友
A  B-C      #A是B和C的共同好友
B  A-E    #A是E和B的共同好友
......

步骤三、将步骤二中的数据调换位置

从步骤2中我们得知,C的好友有ABE,反过来说,ABE他们的共同好友有C,针对这种超过3个的,可以考虑下一步进行两两组合即可

A-B-E   C     #A、B、E有共同好友C
A-C     D     #A与C有共同好友D
B-C     A     #B与C有共同好友A
A-E     B     #A与E有共同好友B

步骤四、将步骤三得到的数据继续拆分

步骤三中,像 : A-B-E C 这种数据,显然需要进一步拆分,因为最终的结果是求取两两好友之间的共同好友,所以可以拆为: A-B C,A-E C,B-E C,为下一步数据组合做最后的准备

A-B  C
A-E  C
B-E  C
A-C  D
B-C  A
A-E  B
......

步骤五、将步骤四得到的数据合并

在使用MapReduce编程中我们知道,Map阶段出去的数据,进入reduce方法中的数据都是key相同的,以第四步中的: A-E 这个key为例,就有2个,这样通过 reduce方法最终输出的结果就是: A-E C,B ,即A-E 这两个用户的共同好友为 C和B

A-B  C        #A,B共同好友有C
A-E  C,B      #A,E有共同好友 C,B
B-E  C        #B,E有共同好友 C
A-C  D        #A,C有共同好友 D
B-C  A        #B,C有共同好友 A
......

通过以上的数据分析,最终可以达到预期的效果,同时也可以看出,上面的步骤划分到MapRedcue中,显然一个MapReduce肯定是无法完成的,至少需要2个

下面是结合上面的步骤分析,得出需要两个MapReduce的数据流程图,参考这个图来协助我们分析编写代码逻辑做参考

编码实现

1、第一个map类

public class FirstMapper extends Mapper<LongWritable,Text,Text,Text> {

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String val = value.toString();
        String[] split = val.split(":");
        //A:B,C,D,F,E,O  拆分后,左边是原用户,右边是好友
        String user = split[0];
        String friends = split[1];
        String[] friendLists = friends.split(",");
        //Map1 输出的结果为 :
        /**
         * B A
         * C A
         * D A
         * F A
         * E A
         */
        for(String str :friendLists ){
            context.write(new Text(str),new Text(user));
        }
    }

}

2、第一个Reduce类

public class FirstReducer extends Reducer<Text,Text,Text,Text> {

    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
        StringBuffer stringBuffer = new StringBuffer();
        for (Text text : values){
            stringBuffer.append(text).append("-");
        }
        //最终写出去的数据格式为: A-E B ......
        context.write(new Text(stringBuffer.toString()),key);
    }

}

3、第一个Job类

public class FirstJob {

    public static void main(String[] args) throws Exception {

        //1、获取job
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        //2、设置jar路径
        job.setJarByClass(FirstJob.class);

        //3、关联mapper 和 Reducer
        job.setMapperClass(FirstMapper.class);
        job.setReducerClass(FirstReducer.class);

        //4、设置 map输出的 key/val 的类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);

        //5、设置最终输出的key / val 类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        //6、设置最终的输出路径
        String inputPath = "F:\\网盘\\csv\\friends.txt";
        String outPath = "F:\\网盘\\csv\\friends1";

        FileInputFormat.setInputPaths(job,new Path(inputPath));
        FileOutputFormat.setOutputPath(job,new Path(outPath));

        // 7 提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }

}

运行上面的Job代码,然后打开运行完毕后的第一个阶段的文件,从内容格式上看,符合第一阶段的输出结果要求的, 即下面的这种数据格式

4、第二个map类

public class SecondMapper extends Mapper<LongWritable,Text,Text,Text> {

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        // I-K-C-B-G-F-H-O-D-    A  阶段1的文件输出格式
        /**
         * 最终输出格式:
         * I-K A
         * I-C A
         * I-B A
         * ......
         */
        //需要将左边的数据进行两两拆分,与V进行组合输出
        String val = value.toString();
        String[] split = val.split("\t");

        String v2 = split[1];
        String[] allUsers = split[0].split("-");
        Arrays.sort(allUsers);

        for(int i=0;i<allUsers.length-1;i++){
            for(int j=i+1;j<allUsers.length;j++){
                context.write(new Text(allUsers[i] + "-" + allUsers[j]),new Text(v2));
            }
        }
    }
}

5、第二个Reducer类

public class SecondReducer extends Reducer<Text,Text,Text,Text> {

    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
        //上一步输出的结果:
        /**
         * A-B C
         * A-B D
         * A-E C
         * A-E D
         * ......
         */
        //只需要将相同的key的Val进行组合即可,即 : A-B C-D,A-E C-D
        StringBuffer stringBuffer = new StringBuffer();
        for (Text text :values ){
            stringBuffer.append(text.toString()).append("-");
        }
        context.write(key,new Text(stringBuffer.toString()));
    }

}

6、第二个Job类

public class SecondJob {
    public static void main(String[] args) throws Exception {

        //1、获取job
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        //2、设置jar路径
        job.setJarByClass(SecondJob.class);

        //3、关联mapper 和 Reducer
        job.setMapperClass(SecondMapper.class);
        job.setReducerClass(SecondReducer.class);

        //4、设置 map输出的 key/val 的类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);

        //5、设置最终输出的key / val 类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        //6、设置最终的输出路径
        String inputPath = "F:\\网盘\\csv\\friends1\\part-r-00000";
        String outPath = "F:\\网盘\\csv\\friends2";

        FileInputFormat.setInputPaths(job,new Path(inputPath));
        FileOutputFormat.setOutputPath(job,new Path(outPath));

        // 7 提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }

}

运行上面的Job代码,查看最终的输出结果,可以看到,也是符合我们预期的业务的

以上就是利用Hadoop实现求共同好友的示例详解的详细内容,更多关于Hadoop求共同好友的资料请关注我们其它相关文章!

(0)

相关推荐

  • 利用Python查看微信共同好友功能的实现代码

    总有思路清奇的朋友存在,想实现查看微信共同好友: 由于之前分享的代码有获取过微信好友头像,所以当时第一反应是通过itchat微信接口获取好友信息,比对两个人的好友信息列表就可以实现了.按理说这么简单的话,应该早有现成的代码了,然而并没有搜到,那正好,拿来练练手! 先放最终结果图: 思路 首先通过itchat这个微信个人号接口扫码登录个人微信网页版,获取可以识别好友身份的数据.这里是需要分别登录两人微信的,拿到两人各自的好友信息存到列表中. 这样一来,查共同好友就转化成了查两个列表中相同元素的问题

  • redis实现共同好友的思路详解

    背景 ​ 微信朋友圈的点赞.评论,只能看到自己好友的信息.这就涉及到了一个共同好友的概念,通过redis的set集合可以很轻松的实现此功能. 共同好友实现思路 每个人的好友存放在set集合中.key的名字为friend_{userId}.如下图: 用户1的好友为2,3,4 用户2的好友为1,3,4 用户3的好友为1,4,5 交集 用户1和2是好友.他们的共同好友可以通过他们的交集获取. redis命令示例: 127.0.0.1:6379> sadd friend_1 2 3 4 (integer

  • 利用Hadoop实现求共同好友的示例详解

    目录 前言 业务分析 实现思路分析 编码实现 1.第一个map类 2.第一个Reduce类 3.第一个Job类 4.第二个map类 5.第二个Reducer类 6.第二个Job类 前言 在很多社交APP中,比如大家熟悉的QQ好友列表中,打开会话框,经常可以看到下面有一栏共同好友的推荐列表,用户通过这种方式,可以添加潜在的关联好友 这种功能该如何实现呢?对redis比较了解的同学应该能很快想到,可以使用redis来实现这个功能.没错,redis确实是个不错的可以实现这个功能的方案. 但redis的

  • 利用MySqlBulkLoader实现批量插入数据的示例详解

    目录 介绍 1.将List转化为DataTable 2.将DataTable转换为标准的CSV文件 3.CSV文件导入数据到数据库 4.使用MySqlBulkLoader批量插入数据 5.完整的代码 介绍 最近在项目中遇到插入数据瓶颈,几万.几十万.几百万的数据保存到MYSQL数据库,使用EF插入数据速度非常慢,数据量非常大时EF插入需要几十分钟,甚至几个小时,这样子的速度肯定不是我们所期望的. 后面经过了解与研究发现MySqlBulkLoader,可以批量将数据插入到数据库并且速度上面远远优于

  • 利用Python查看目录中的文件示例详解

    前言 我们在日常开发中,经常会遇到一些关于文件的操作,例如,实现查看目录内容的功能.类似Linux下的tree命令.统计目录下指定后缀文件的行数. 功能是将目录下所有的文件路径存入list中.可以加入后缀判断功能,搜索指定的后缀名文件.主要利用递归的方法来检索文件. 仿造 tree 功能示例代码 Python2.7 列出目录下所有文件 递归法 import os def tree_dir(path, c_path='', is_root=True): """ Get file

  • python利用标准库如何获取本地IP示例详解

    标准库 Python拥有一个强大的标准库.Python语言的核心只包含数字.字符串.列表.字典.文件等常见类型和函数,而由Python标准库提供了系统管理.网络通信.文本处理.数据库接口.图形系统.XML处理等额外的功能. Python标准库的主要功能有: 1.文本处理,包含文本格式化.正则表达式匹配.文本差异计算与合并.Unicode支持,二进制数据处理等功能 2.文件处理,包含文件操作.创建临时文件.文件压缩与归档.操作配置文件等功能 3.操作系统功能,包含线程与进程支持.IO复用.日期与时

  • 如何利用Android Studio将moudle变成jar示例详解

    前言 本文主要给大家介绍的是关于利用Android Studio将moudle变成jar的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 方法如下: 1.在moudle中的build.gradle文件中添加如下代码:(和android.dependencies标签同级) task makeJar(type: Copy) { delete 'build/libs/test.jar' from('build/intermediates/bundles/release/')

  • java 与testng利用XML做数据源的数据驱动示例详解

    java 与testng利用XML做数据源的数据驱动示例详解 testng的功能很强大,利用@DataProvider可以做数据驱动,数据源文件可以是EXCEL,XML,YAML,甚至可以是TXT文本.在这以XML为例: 备注:@DataProvider的返回值类型只能是Object[][]与Iterator<Object>[] TestData.xml: <?xml version="1.0" encoding="UTF-8"?> <

  • 利用Python打造一个多人聊天室的示例详解

    一.实验名称 建立聊天工具 二.实验目的 掌握Socket编程中流套接字的技术,实现多台电脑之间的聊天. 三.实验内容和要求 vii.掌握利用Socket进行编程的技术 viii.必须掌握多线程技术,保证双方可以同时发送 ix.建立聊天工具 x.可以和多个人同时进行聊天 xi.必须使用图形界面,显示双方的语录 四.实验环境 PC多台,操作系统Win7,win10(32位.64位) 具备软件python3.6 . 五.操作方法与实验步骤 服务端 1.调入多线程.与scoket包,用于实现多线程连接

  • 利用Python中xlwt模块操作excel的示例详解

    目录 一.安装 二.创建表格并写入 三.设置单元格样式 四.设置单元格宽度 五.设置单元格背景色 六.设置单元格内容对齐方式 七.单元格添加超链接 八.单元格添加公式 九.单元格中输入日期 十.合并行和列 十一.单元格添加边框 一.安装 pip install xlwt 二.创建表格并写入 import xlwt # 创建一个workbook并设置编码 workbook = xlwt.Workbook(encoding = 'utf-8') # 添加sheet worksheet = workb

  • 利用Pygame制作简单动画的示例详解

    目录 前言 计时器 绘制精灵 加载精灵 完整代码 前言 实现一个帧动画,使用的一个图,根据不同的时间显示不同的图. 使用的就是如下所示的一张图,宽度780 * 300 ,使用加载图片 260 * 150来实现. pygame.init() screen = pygame.display.set_mode((400, 300), 0, 32) pygame.display.set_caption("动画") while True: for event in pygame.event.ge

  • 利用Python创建位置生成器的示例详解

    目录 介绍 开始 步骤 创建训练数据集 创建测试数据集 将合成图像转换回坐标 放在一起 结论 介绍 在这篇文章中,我们将探索如何在美国各地城市的地图数据和公共电动自行车订阅源上训练一个快速生成的对抗网络(GAN)模型. 然后,我们可以通过为包括东京在内的世界各地城市创建合成数据集来测试该模型的学习和概括能力. git clone https://github.com/gretelai/GAN-location-generator.git 在之前的一篇博客中,我们根据电子自行车订阅源中的精确位置数

随机推荐