Python和C/C++交互的几种方法总结

前言

python作为一门脚本语言,其好处是语法简单,很多东西都已经封装好了,直接拿过来用就行,所以实现同样一个功能,用Python写要比用C/C++代码量会少得多。但是优点也必然也伴随着缺点(这是肯定的,不然还要其他语言干嘛),python最被人诟病的一个地方可能就是其运行速度了。这这是大部分脚本语言共同面对的问题,因为没有编译过程,直接逐行执行,所以要慢了一大截。所以在一些对速度要求很高的场合,一般都是使用C/C++这种编译型语言来写。但是很多时候,我们既想使用python的简介优美,又不想损失太多的性能,这个时候有没有办法将python与C/C++结合到一起呢?这样在性能与速度要求不高的地方,可以用pyhton写,而关键的运算部分用C/C++写,这样就太好了。python在做科学计算或者数据分析时,这是一个非常普遍的需求。要想实现这个功能,python为我们提供了不止一种解决办法。

下面我就逐一给大家介绍。

一、Cython 混合python与C

官方网址:http://docs.cython.org/en/latest/src/quickstart/overview.html。首先来看看cython的官方介绍吧。

[Cython] is a programming language that makes writing C extensions for the Python language as easy as Python itself. It aims to become a superset of the [Python]language which gives it high-level,  object-oriented, functional, and dynamic programming. Its main feature on top of these is support for optional static type declarations as part of the language. The source code gets translated into optimized C/C++ code and compiled as Python extension modules. This allows for both very fast program execution and tight integration with external C libraries, while keeping up the high programmer productivity for which the Python language is well known.

简单来说,cython就是一个内置了c数据类型的python,它是一个python的超集,兼容几乎所有的纯python代码,但是又可以使用c的数据类型。这样就可以同时使用c库,又不失python的优雅。

好了,不讲太多废话,直接来看cython如何使用吧。这里的介绍大部分来自官网,由于cython涉及到的东西还比较多,所以这里只是简单的入门介绍,详细的信息请移步英文官网。

使用cython有两种方式:第一个是编译生成Python扩展文件(有点类似于dll,即动态链接库),可以直接import使用。第二个是使用jupyter notebook或sage notebook 内联 cython代码。

先看第一种。还是举最经典的hello world的例子吧。新建一个hello.pyx文件,定义一个hello函数如下:

def hello(name):
 print("Hello %s." % name)

然后,我们来写一个setup.py 文件(写python扩展几乎都要写setup.py文件,我之前也简单介绍过怎么写)如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2017/5/8 9:09
# @Author : Lyrichu
# @Email : 919987476@qq.com
# @File : setup.py
'''
@Description: setup.py for hello.pyx
'''
from Cython.Build import cythonize
from distutils.core import setup

# 编写setup函数
setup(
 name = "Hello",
 ext_modules = cythonize("hello.pyx")
)

其中 ext_modules 里面写你要 编译的.pyx文件名字。OK,所有工作都完成了。接下来,进入cmd,切换到setup.py 所在的文件,然后执行命令: python setup.py build_ext --inplace 就会编译生成一个build 文件夹以及一个.pyd文件了,这个pyd文件就是python的动态扩展库,--inplace 的意思是在当前文件目录下生成.pyd文件,不加这一句就会在build文件夹中生成。

截图如下:

图 1

可以看出,除了生成了一个pyd文件之外,还生成了一个.c文件。test.py是我们用来测试的文件,在里面写如下内容:

from hello import hello
hello("lyric")

从hello 模块导入 hello函数,然后直接调用就可以了。结果输出 Hello lyric.

再来看如何 在 jupyter notebook中使用cython。如果你装过ipython,一个升级版的python交互式环境,你应该听过 ipyhton notebook的大名,现在它升级了,改名叫jupyter notebook 了。简单来说,这个就是一个可以在网页环境下交互式使用python的工具,不仅可以实时看到计算结果,还可以直接展示表格,图片等,功能还是非常强大的。首先你得安装jupyter notebook.我印象中安装了ipython之后应该就会带了jupyter了。如果没有,可以直接 pip install jupyter .然后输入命令 jupyter notebook 就会在浏览器中打开jupyter了。

如下图2 所示:

图 2

点击右上角的new按钮,可以选择新建一个文本文件或者文件夹,markdown或者python文件,这里我们选择新建一个pyhton 文件,然后就会转到一个新的窗口了,如下图3:

图 3

In[]:和ipython一样,就代表着我们要输入代码的地方,输入代码之后,点击向右的三角形符号,就会执行代码了。

首先输入 %load_ext cython ,然后执行,%开头的语句是jupyter的魔法命令,%是行命令,%%是单元命令,具体不多说,有空给大家专门介绍一下notebook的使用。

接下来输入:

 %%cython
 cdef int a = 0
 for i in range(10):
  a += i
 print(a)

%%cython 表明将cython内嵌到jupyter,cdef 是cython的关键字,用于定义c类型,这里将a定义为c中的int类型,并且初始化为0.

然后后面的循环就是累加0到9的意思,最后输出45.

另外,我们如果想分析代码 的执行情况,可以输入 %%cython --annotate 命令,这样就可以输出结果的同时,也输出 详细的代码执行情况报告了。

截图如图4 所示:

图 4

jupyter notebook 可以内嵌cython,不用我们手写setup.py 文件,省去了编译的过程,方便了cython的使用,所以不是正式做项目,只是写一写小东西用jupyter+cython还是非常方便的。

前面提到了 cdef,再举一个稍微复杂点的例子吧。还是引用官网的例子,写一个算积分的函数.新建 integrate.pyx 文件,写入如下内容:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2017/5/8 9:26
# @Author : Lyrichu
# @Email : 919987476@qq.com
# @File : integrate.py
'''
@Description: 积分运算,使用 cython cdef 关键字
'''
def f(double x):
 return x**2 - x

def integrate_f(double a,double b,int N):
 cdef int i
 cdef double s,dx
 s = 0
 dx = (b-a)/N
 for i in range(N):
  s += f(a + i*dx)*dx
 return s # 返回定积分

这段代码应该也是比较好理解的, f()函数是被积函数,a,b是积分的上下限,N是分割小矩形的个数,注意这里将 变量i,s,dx全部都用cdef 声明为c类型了,一般来说,在需要密集计算的地方比如循环或者复杂运算,可以将对应的变量声明为c类型,可以加快运行速度。

然后和上面一样编写 setup.py ,就是把 pyx的文件名改一下,代码我就不贴了。然后python setup.py build_ext --inplace 执行。得到pyd文件,编写测试文件test.py如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2017/5/8 9:35
# @Author : Lyrichu
# @Email : 919987476@qq.com
# @File : test.py
'''
@Description: 测试使用cython 混合c与python的integrate 函数与纯python写的integrate函数速度上的差异
'''
from integrate import integrate_f
import time

a = 1 # 积分区间下界
b = 2 # 积分区间上界
N = 10000 # 划分区间个数

# 使用纯python代码写的integrate函数
def py_f(x):
 return x**2 - x

def py_integrate_f(a,b,N):
 dx = (b-a)/N
 s = 0
 for i in range(N):
  s += py_f(a + i*dx)*dx
 return s

start_time1 = time.time()
integrate_f_res = integrate_f(a,b,N)
print("integrate_f_res = %s" % integrate_f_res)
end_time1 = time.time()
print(u"cython 版本计算耗时:%.8f" % (end_time1 - start_time1))

start_time2 = time.time()
py_integrate_f_res = py_integrate_f(a,b,N)
print("py_integrate_f_res = %s" % py_integrate_f_res)
end_time2 = time.time()
print(u"python 版本计算耗时:%.8f" % (end_time2 - start_time2))

上面的代码,我们重新使用python写了一个积分函数py_integrate_f,与pyd中的integrate_f 函数进行运算对比,结果如下(图5):

图5

可以看出,使用了cython的版本比纯Python的版本大概快了4、5倍的样子,而这仅仅是将几个变量改为c类型的结果,可见,cython确实可以方便地对python与c进行混合,获得速度上的提升,又不失去Python的简洁优美。

最后再来说下cython 如何调用c libraries. C 语言 stdlib 库有一个 atoi函数,可以将字符串转化为整数,math库有一个sin函数,我们就以这两个函数为例。新建 calling_c.pyx 文件,文件内容如下:

from libc.stdlib cimport atoi
from libc.math cimport sin

def parse_char_to_int(char * s):
 assert s is not NULL,"byte string value is NULL"
 return atoi(s)

def f_sin_squared(double x):
 return sin(x*x)

前两行导入了C语言中的函数,然后我们自定义了两个函数,parse_char_to_int 可以将字符串转换为整数,f_sin_squared 计算 x平方的sin函数值。写 setup.py 文件,和之前差不多,但是要注意的是,在unix系统下,math库默认是不链接的,所以需要指明其位置,那么在unix系统下,setup.py 文件的内容就需要增加Extension 一项,如下:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

ext_modules=[
 Extension("calling_c",
    sources=["calling_c.pyx"],
    libraries=["m"] # Unix-like specific
 )
]

setup(
 name = "Calling_c",
 ext_modules = cythonize(ext_modules)
)

然后直接编即可。test.py文件如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2017/5/8 12:21
# @Author : Lyrichu
# @Email : 919987476@qq.com
# @File : test.py
'''
@Description: test file
'''
from calling_c import f_sin_squared,parse_char_to_int
str = "012"
str_b = bytes(str,encoding='utf-8')
n = parse_char_to_int(str_b)
print("n = %d" %n)
from math import pi,sqrt
x = sqrt(pi/2)
res = f_sin_squared(x)
print("sin(pi/2)=%f" % res)

需要注意的是,Python字符串不能直接传入 parse_char_to_int 函数,需要将其转换为 bytes 类型再传入。运行结果为:

n = 12
sin(pi/2)=1.000000

如果不想通过libc导入c语言模块,cython也允许我们自己声明c函数原型来导入,一个例子如下:

# 自己声明c函数原型
cdef extern from "math.h":
 cpdef double cos(double x)

def f_cos(double x):
 return cos(x)

使用了 extern 关键字。

每次都编写setup.py 文件,然后编译,略显麻烦。cython还提供了一种更简单的方法:pyximport。通过导入pyximport(安装cython时会自动安装),在没有引入额外的c库的情况下,可以直接调用pyx中的函数,更为直接与方便。以前面的hello 模块为例,编写好hello.py文件之后,编写一个pyximport_test.py 文件,文件内容如下:

import pyximport
pyximport.install()
import hello
hello.hello("lyric")

直接运行就会发现,确实可以正确导入hello模块。

cython的更多内容,请大家自行访问官网查看。

其他python与c/c++ 混合编程的方式主要还有 使用 ctypes,cffi模块以及swig。本来想一起写的,想想还是分开写吧,不然太长了。后续会陆续更新,敬请关注。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • c++生成dll使用python调用dll的方法

    第一步,建立一个CPP的DLL工程,然后写如下代码,生成DLL 复制代码 代码如下: #include <stdio.h> #define DLLEXPORT extern "C" __declspec(dllexport) DLLEXPORT int __stdcall hello()     {         printf("Hello world!\n");         return 0;     } 第二步,编写一个 python 文件:

  • 通过C++学习Python

    我会随便说,C++ 近年来开始"抄袭" Python 么?我只会说,我在用 C++ 来学习 Python. 不信?来跟着我学? 字面量 Python 早在 2.6 版本中就支持将二进制作为字面量了1, 最近 C++14 逐步成熟,刚刚支持这么干2: 复制代码 代码如下: static const int primes = 0b10100000100010100010100010101100; 更不用说 Python 在 1.5 时代就有了 raw string literals 的概念

  • 深入浅析 C++ 调用 Python 模块

    一般开发过游戏的都知道Lua和C++可以很好的结合在一起,取长补短,把Lua脚本当成类似动态链接库来使用,很好的利用了脚本开发的灵活性.而作为一门流行的通用型脚本语言Python,也是可以做到的.在一个C++应用程序中,我们可以用一组插件来实现一些具有统一接口的功能,一般插件都是使用动态链接库实现,如果插件的变化比较频繁,我们可以使用Python来代替动态链接库形式的插件(堪称文本形式的动态链接库),这样可以方便地根据需求的变化改写脚本代码,而不是必须重新编译链接二进制的动态链接库.灵活性大大的

  • C++、python和go语言实现的简单客户端服务器代码示例

    工作中用到了C/S模型,所做的也无非是给服务器发数据,但开发阶段会遇到程序自身的回环测试,需要用到简单的服务端以便验证数据发送的正确性. 写软件用C++,跑测试用python,这段时间也刚好看go语言,所以都要有demo.以下三组程序实现的功能相同,这里一起做下总结. 一.C++实现 Boost.Asio是一个跨平台的C++库,它用现代C++方法为网络和底层I/O程序提供了一致的异步I/O模型. 为了跨平台,我用boost库实现,具体如下. 服务端代码: 复制代码 代码如下: /*      F

  • 浅谈Python程序与C++程序的联合使用

    作为Python程序员,应该能够正视Python的优点与缺点.众所周之,Python的运行速度是很慢的,特别是大数据量的运算时,Python会慢得让人难以忍受.对于这种情况,"专业"的解决方案是用上numpy或者opencl.不过有时候为了一点小功能用上这种重型的解决方案很不划算,或者有时候想要实现的操作在numpy里面没有,需要我们自己用C语言来编写.总之,我们使用Python与C++的混合编程能够加快程序热点的运算速度. 首先要提醒大家注意的是,在考虑联合编程之前一定要找到程序运行

  • 将Python代码嵌入C++程序进行编写的实例

    把python嵌入的C++里面需要做一些步骤 安装python程序,这样才能使用python的头文件和库     在我们写的源文件中增加"Python.h"头文件,并且链入"python**.lib"库(还没搞清楚这个库时静态库还是导出库,需要搞清楚)     掌握和了解一些python的C语言api,以便在我们的c++程序中使用 常用的一些C API函数 在了解下面的函数之前有必要了解一下**PyObject***指针,python里面几乎所有的对象都是使用这个指

  • Python调用C++程序的方法详解

    前言 大家都知道Python的优点是开发效率高,使用方便,C++则是运行效率高,这两者可以相辅相成,不管是在Python项目中嵌入C++代码,或是在C++项目中用Python实现外围功能,都可能遇到Python调用C++模块的需求,下面列举出集中c++代码导出成Python接口的几种基本方法,一起来学习学习吧. 原生态导出 Python解释器就是用C实现,因此只要我们的C++的数据结构能让Python认识,理论上就是可以被直接调用的.我们实现test1.cpp如下 #include <Pytho

  • Python 调用VC++的动态链接库(DLL)

    1. 首先VC++的DLL的导出函数定义成标准C的导出函数: 复制代码 代码如下: #ifdef LRDLLTEST_EXPORTS #define LRDLLTEST_API __declspec(dllexport) #else #define LRDLLTEST_API __declspec(dllimport) #endif extern "C" LRDLLTEST_API int Sum(int a , int b); extern "C" LRDLLTE

  • 详解python如何调用C/C++底层库与互相传值

    前言 开发环境: Centos 7 + Python 3.5.1 + Qt Creator(只是使用Qt Creator编译而已,并没有使用QT的任何库) Python调用C/C++库,我现在能做到的有两种方式 1.extern "C" 导出(互相传值比较麻烦,不建议使用这种方式): 将C/C++库做成和平常一样的DLL和或者.so,比如: //.h文件 #include <Python.h> //.cpp文件 //C/C++ my.so 或者my.dll enter &q

  • Python调用C/C++动态链接库的方法详解

    本文以实例讲解了Python调用C/C++ DLL动态链接库的方法,具体示例如下: 示例一: 首先,在创建一个DLL工程(本例创建环境为VS 2005),头文件: //hello.h #ifdef EXPORT_HELLO_DLL #define HELLO_API __declspec(dllexport) #else #define HELLO_API __declspec(dllimport) #endif extern "C" { HELLO_API int IntAdd(in

随机推荐