Python数据分析应用之Matplotlib数据可视化详情

目录
  • 简述
  • 掌握绘图基础语法与基本参数 掌握pyplot基础语法
    • pyplot中的基础绘图语法
    • 包含子图的基础语法
    • 调节线条的rc参数
    • 调节字体的rc参数
  • 分析特征间的关系
    • 绘制散点图
    • 绘制2000-2017年个季度过敏生产总值散点图
    • 绘制2000-2017年各季度国民生产总值散点图
  • 绘制折线图
    • 绘制2000-2017年各季度过敏生产总值折线图
    • 2000~ 2017年各季度国民生产总值点线图
    • 2000~ 2017年各季度国民生产总值折线散点图
  • 任务实现
    • 任务1
    • 任务2
  • 分析特征内部数据分布与分散状况
  • 绘制饼图
  • 绘制箱线图
    • 任务实现
  • 实训

简述

mat参照了函数设计,plot表示绘图的作用,lib则表示一个集合。今年在开源社区的推动下,Matplotlib在科学计算领域得到了广泛的应用,成为Python中应用非常广的绘图工具之一。其中Matplotlib应用最广的是matplotlib.pyplot模块。

matplotlib.pyplot是一个命令风格函数的集合,使得Matplotlib的机制更像MATLAB。每个绘图函数都可对图形进行一些修改,如创建图形,在图形中创建绘图区域,在绘图区域绘制一些线条,使用标签装饰绘图等。在pyplot中,各种状态跨函数调用保存,以便跟踪诸如当前图形和绘图 区域之类的东西,并且绘图函数始终指向当前轴域。本章以pyplot为基础介绍和展开学习。

学习目标 :

  • 掌握pyplot常用的绘图参数的调节方法掌
  • 握子图的绘制方法
  • 掌握绘制图形的保存与展示方法
  • 掌握散点图和折线图的作用与绘制方法
  • 掌握直方图、饼图和箱线图的作用与绘制方法

掌握绘图基础语法与基本参数 掌握pyplot基础语法

大部分的pyplot图形绘制都遵循一个流程,使用这个流程可以完成大部分图形的绘制。pyplot基本绘图流程主要分为3个部分。

创建画布与创建子图:

构建出一张空白的画布,并可以选择是否将整个画布划分为多个部分,方便在同一幅图上绘制多个图形的情况。当只需要绘制一幅简单的图形时,就可以不用分割。
pyplot创建画布与选中子图的常用函数

添加画布内容:

第二部分是绘图的主体。
包括添加标题、添加坐标名称、绘制图形等步骤是并列的,没有先后。但添加图例一定是在绘制图形之后进行的。
pyplot中添加各类标签和图例的常用函数

保存与显示图形:

第三部分用于保存和显示图形,通常只有两个函数,参数也很少
pyplot中保存额和显示图形的常用函数

pyplot中的基础绘图语法

import numpy as np
import matplotlib.pyplot as plt
#matplotlib inline表示在行中显示图片,在命令行运行报错
data=np.arange(0110.01)
plt.title('lines')# 添加标题
plt.xlabel('x')#添加x轴的名称
plt.ylabel('y')#添加y轴的名称
plt.xlim((0,1))#确定x轴范围
plt.ylim((0,1))#确定y轴范围
plt.xticks([0,0.2,0.4,0.6,0.8,1])#规定x轴刻度
plt.yticks([0,0.2,0.4,0.6,0.8,1])#确定y轴刻度
plt.plot(data,data**2)#添加y=x^2曲线
plt.plot(data,data**4)#添加y=x^4曲线
plt.legend(['y=x^2','y=x^4'])
plt.savefig(' 3-1.png')
plt.show()

包含子图的基础语法

import numpy as np
import matplotlib.pyplot as plt

rad = np.arange(0, np.pi * 2, 0.01)
# 第一幅子图
p1 = plt.figure(figsize=(8, 6), dpi=80)  # 确定画布大小
ax1 = p1.add_subplot(2, 1, 1)  # 创建一个2行1列的子图
plt.title('lines')  # 添加标题
plt.xlabel('x')  # 添加x轴的名称
plt.ylabel('y')  # 添加y轴的名称
plt.xlim((0, 1))  # 确定x轴范围
plt.ylim((0, 1))  # 确定y轴范围
plt.xticks([0, 0.2, 0.4, 0.6, 0.8, 1])  # 确定x轴刻度
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1])  # 确定y轴刻度
plt.plot(rad, rad ** 2)  # 添加曲线
plt.plot(rad, rad ** 4)  # 添加曲线
plt.legend(['y=x^2'], ['y=x^4'])
# 第二幅子图
ax2 = p1.add_subplot(2, 1, 2)  # 开始绘制第二幅
plt.title('sin/cos')
plt.xlabel('rad')
plt.ylabel('value')
plt.xlim((0, np.pi * 2))
plt.ylim((-1, 1))
plt.xticks([0, np.pi / 2, np.pi, np.pi * 1.5, np.pi * 2])
plt.yticks([-1, -0.5, 0, 0.5, 1])
plt.plot(rad, np.sin(rad))
plt.plot(rad, np.cos(rad))
plt.legend(['sin'], ['cos'])
plt.savefig('sincos.png')
plt.show()

设置pyplot的动态rc参数:

pyplot使用rc配置文件来自定义图形的各种默认属性,被称为rc配置或rc参数。

默认rc参数可以在python交互式环境中动态更改。所有存储在字变量中的rc参数被称为rcParams。rc参数在修改过后,绘图时使用默认的参数就会改变。

调节线条的rc参数

import numpy as np
import matplotlib.pyplot as plt

# 原图
x = np.linspace(0, 4 * np.pi)
y = np.sin(x)
plt.plot(x, y, label="$sin(x)$")
plt.title('sin')
plt.savefig('默认sin曲线.png')
plt.show()

import numpy as np
import matplotlib.pyplot as plt

#修改RC参数后的图
plt.rcParams['lines.linestyle'] = '-.'
plt.rcParams['lines.linewidth']=3
plt.plot(x,y,label="$sin(x)$")
plt.title('sin')
plt.savefig('修改rc参数后sin曲线.png')
plt.show()

线条常用的rc参数名称。解释与取值:

lines.linstyle参数取值及其含义:

lines.marker参数取值及其意义:

lines.marker取值含义o圆圈D菱形h六边形1H六边形2-水平线8八边形P五边形,像素+加号None无、点s正方形*星号d小菱形v一角朝下的三角形<一角朝左的三角形>一角朝右的三角形^一角朝上的三角形|竖线xX

调节字体的rc参数

import numpy as np
import matplotlib.pyplot as plt

# 无法显示中文标题
x = np.linspace(0, 4 * np.pi)
y = np.sin(x)
plt.plot(x, y, label="$sin(x)$")
plt.title('sin曲线')
plt.savefig('无法显示中文标题sin曲线.png')
plt.show()

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

# 修改rc参数后的图
plt.plot(x, y, label='$sin(x)$')
plt.title('sin')
plt.savefig('修改rc参数后的sin曲线.png')
plt.show()

分析特征间的关系

绘制散点图

散点图,是利用坐标即散点的分布形态反映特征间的统计关系的一种图形。值由点在图表中的位置表示,类别由图中的不同标记表示,通常用于比较跨类别的数据。

散点图可以提供两类关键信息:

  • 特征之间是否存在数值或者数量的关联趋势,关联趋势是线性的还是非线性的
  • 如果某个点或者几个点偏离大多数点,这个点就是离群值,通过散点图可以一目了然,从而可以进一步分析这些离群值是否存在建模分析中产生很大的影响。

scatter函数常用参数及说明:

绘制2000-2017年个季度过敏生产总值散点图

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False

data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']
plt.figure(figsize=(8, 7))
plt.scatter(values[:, 0], values[:, 2], marker='o')
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.ylim((0, 225000))
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45)
plt.title('绘制2000-2017年个季度过敏生产总值散点图')
plt.savefig('绘制2000-2017年个季度过敏生产总值散点图.png')
plt.show()

绘制2000-2017年各季度国民生产总值散点图

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

plt.figure(figsize=(8, 7))
data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
values = data['values']
# 绘制散点图1
plt.scatter(values[:, 0], values[:, 3], marker='o', c='red')
# 绘制散点图2
plt.scatter(values[:, 0], values[:, 4], marker='D', c='blue')
# 绘制散点图3
plt.scatter(values[:, 0], values[:, 5], marker='v', c='yellow')
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45)
plt.title('2000-2017年各季度国民生产总值散点图')
plt.legend(['第一产业', '第二产业', '第三产业'])
plt.savefig('2000-2017年各季度国民生产总值散点图.png')
plt.show()

绘制折线图

折线图:将数据点按照顺序连接起来的图形。适合用于显示随时间而变化的连续数据。同时还可以看出数量的差异,增长趋势的变化。

pyplot绘制折线图的函数为plot,基本语法如下:
matplotlib.pyplot.plot(*args,**kwargs)

绘制2000-2017年各季度过敏生产总值折线图

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

plt.figure(figsize=(8, 7))
#,
data = np.load('35data.npz/国民经济核算季度数据.npz',allow_pickle=True)
values = data['values']
plt.plot(values[:, 0], values[:, 2], color='r', linestyle='--')
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.ylim((0, 225000))
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45)
plt.title('2000~ 2017 年各季度 国民生产 总值折线')
plt.savefig('2000~ 2017 年各季度 国民生产 总值折线.png')
plt.show()

2000~ 2017年各季度国民生产总值点线图

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('35data.npz/国民经济核算季度数据.npz',allow_pickle=True)
values = data['values']
plt.figure(figsize=(8, 7))
plt.plot(values[:,0],values[:,2],color='r',linestyle='--',marker='o')
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.ylim((0, 225000))
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45)
plt.title('2000~ 2017年各季度国民生产总值点线图')
plt.savefig('2000~ 2017年各季度国民生产总值点线图.png')
plt.show()

2000~ 2017年各季度国民生产总值折线散点图

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
values = data['values']
plt.figure(figsize=(8, 7))
plt.plot(values[:, 0], values[:, 3], 'bs-',
         values[:, 0], values[:, 4], 'ro-',
         values[:, 0], values[:, 5], 'gH--')
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.ylim((0, 100000))
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45)
plt.title('2000~ 2017年各季度国民生产总值折线')
plt.legend(['第一产业','第二产业', '第三产业'])
plt.savefig('2000~ 2017年各季度国民生产总值折线散点图.png')
plt.show()

任务实现

任务1

绘制2000-2017各产业与行业的过敏生产总值散点图:

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']
p = plt.figure(figsize=(12, 12))
# 子图1
ax1 = p.add_subplot(2, 1, 1)
plt.scatter(values[:, 0], values[:, 3], marker='o', c='r')
plt.scatter(values[:, 0], values[:, 4], marker='D', c='b')
plt.scatter(values[:, 0], values[:, 5], marker='v', c='y')
plt.ylabel('生产总值(亿元)')
plt.title('2000-2017年各产业与行业国民生产总值散点图')
plt.legend(['第一产业', '第二产业', '第三产业'])

# 子图2
ax2 = p.add_subplot(2, 1, 2)
plt.scatter(values[:, 0], values[:, 6], marker='o', c='r')
plt.scatter(values[:, 0], values[:, 7], marker='D', c='b')
plt.scatter(values[:, 0], values[:, 8], marker='v', c='y')
plt.scatter(values[:, 0], values[:, 9], marker='8', c='g')
plt.scatter(values[:, 0], values[:, 10], marker='p', c='c')
plt.scatter(values[:, 0], values[:, 11], marker='+', c='m')
plt.scatter(values[:, 0], values[:, 12], marker='s', c='k')
# 绘制散点图
plt.scatter(values[:, 0], values[:, 13], marker='*', c='purple')
# 绘制散点图
plt.scatter(values[:, 0], values[:, 14], marker='d', c='brown')
plt.legend(['农业', '工业', '建筑', '批发', '交通', '餐饮', '金融', '房地产', '其他'])
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45)
plt.savefig('2000~ 2017年各产业与行业各季度国民生产总值散点子图.png')
plt.show()

任务2

绘制2000-2017各产业与行业的过敏生产总值折线图:

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']
p1 = plt.figure(figsize=(8, 7))
# 子图1
ax3 = p1.add_subplot(2, 1, 1)
plt.plot(values[:, 0], values[:, 3], 'b-',
values[:, 0], values[:, 4], 'r--',
values[:, 0], values[:, 5], 'g--')
plt.ylabel('生产总值(亿元)')
plt.title('2000-2017年各产业与行业国民生产总值折线图')
plt.legend(['第一产业', '第二产业', '第三产业'])

# 子图2
ax4 = p1.add_subplot(2, 1, 2)
plt.plot(values[:, 0], values[:, 6], 'r--',
values[:, 0], values[:, 7], 'b.',
values[:, 0], values[:, 8], 'y--',
values[:, 0], values[:, 9], 'g:',
values[:, 0], values[:, 10], 'c-',
values[:, 0], values[:, 11], 'm-',
values[:, 0], values[:, 12], 'k--',
# 绘制散点图
values[:, 0], values[:, 13], 'r:',
# 绘制散点图
values[:, 0], values[:, 14], 'b-')
plt.legend(['农业', '工业', '建筑', '批发', '交通', '餐饮', '金融', '房地产', '其他'])
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45)
plt.savefig('2000~ 2017年各产业与行业各季度国民生产总值折线子图.png')
plt.show()

分析特征内部数据分布与分散状况

直方图、饼图和箱线图是另外3种数据分析常用的图形,主要用于分析数据内部的分布状态和分散状态

  • 直方图主要用于查看各分组数据的数量分布,以及各个分组数据之间的数量比较。
  • 饼图倾向于查看各分组数据在总数据中的占比。箱线图的主要作用是发现整体数据的分布分散情况。 绘制直方图
  • 在直方图中可以发现分布表无法发现的数据模式、样本的频率分布和总体的分布

puplot中绘制直方图的函数为bar,基本使用语法如下:

matplotlib.pyplot.bar(left,height,width=0.8,bottom=None,hold=None,data=None,**kwargs)

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']
label = ['第一产业', '第二产业', '第三产业']
plt.figure(figsize=(6, 5))
plt.bar(range(3), values[-2, 3:6], width=0.5)
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.title('000~ 2017年各产业与行业各季度国民生产总值直方图')
plt.xticks(range(3), label)
plt.savefig('2000~ 2017年各产业与行业各季度国民生产总值直方图.png')
plt.show()

绘制饼图

饼图(Pie Graph)是将各项的大小与各项总和的比例显示在一张“饼”中,以“饼”的大小来确定每一项的占比。饼图可以比较清楚地反映出部分与部分、部分与整体之间的比例关系,易于显示每组数据相对于总数的大小,而且显示方式直观。

pyplot中绘制饼图的函数为pie,其基本使用语法如下:
matplotlib.pyplot.pie(x,explode=None,labels=Nonecolors=None,autopctNone,pctdistance=0.6shadow=False,labeldistance=1.1,startangle=None,radius=None,counterclock=Truewedgeprops=Nonetextprops=Nonecenter=(0.0)frame=False
hold=Nonedata-None)

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']
label = ['第一产业', '第二产业', '第三产业']
explode = [0.01, 0.01, 0.01]
plt.pie(values[-1, 3:6], explode=explode, labels=label, autopct='%1.1f%%')
plt.figure(figsize=(6, 6))
plt.title('2000~ 2017年各产业与行业各季度国民生产总值饼图')
plt.savefig('2000~ 2017年各产业与行业各季度国民生产总值占比饼图.png')
plt.show()

绘制箱线图

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

plt.figure(figsize=(6, 4))
data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']
label = ['第一产业', '第二产业', '第三产业']
gdp = (list(values[:, 3]), list(values[:, 4]), list(values[:, 5]))
plt.boxplot(gdp, notch=True, labels=label, meanline=True)
plt.title('2000-2017年各产业国民生产总值箱线图')
plt.savefig('2000-2017年各产业过敏生产总值箱线图')
plt.show()

任务实现

任务1:

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

plt.figure(figsize=(6, 6))
data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']
label1 = ['第一产业', '第二产业', '第三产业']
label2 = ['农业', '工业', '建筑', '批发', '交通', '餐饮', '金融', '房地产', '其他']
p = plt.figure(figsize=(12, 12,))
# 子图1
ax1 = p.add_subplot(2, 2, 1)
plt.bar(range(3), values[0, 3:6], width=0.5)
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.title('2000~ 2017年各产业与行业各季度国民生产总值构成分布直方图')
plt.xticks(range(3), label1)

# 子图2
ax2 = p.add_subplot(2, 2, 2)
plt.bar(range(3), values[0, 3:6], width=0.5)
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.title('2000~ 2017年各产业与行业各季度国民生产总值构成分布直方图')
plt.xticks(range(3), label1)
# 子图3
ax3 = p.add_subplot(2, 2, 3)
plt.bar(range(9), values[0, 6:], width=0.5)
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.title('2000~ 2017年各产业与行业各季度国民生产总值构成分布直方图')
plt.xticks(range(9), label2)
# 子图4
ax4 = p.add_subplot(2, 2, 4)
plt.bar(range(9), values[0, 6:], width=0.5)
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.title('2000~ 2017年各产业与行业各季度国民生产总值构成分布直方图')
plt.xticks(range(9), label2)
plt.savefig('2000~ 2017年各产业与行业各季度国民生产总值构成分布直方图.png')
plt.show()

任务2:

绘制国民生产总值构成分布饼图:

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

plt.figure(figsize=(6, 6))
data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']
label1 = ['第一产业', '第二产业', '第三产业']
label2 = ['农业', '工业', '建筑', '批发', '交通', '餐饮', '金融', '房地产', '其他']

explode1 = [0.01, 0.01, 0.01]
explode2 = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
p = plt.figure(figsize=(12, 12))
# 子图1
ax1 = p.add_subplot(2, 2, 1)
plt.pie(values[0, 3:6], explode=explode1, labels=label1, autopct='%1.1f%%')
plt.title('2000年第一季度国民生产总值产业构成分布饼图')
# 子图2
ax2 = p.add_subplot(2, 2, 2)
plt.pie(values[-1, 3:6], explode=explode1, labels=label1, autopct='%1.1f%%')
plt.title('2000年第一季度国民生产总值产业构成分布饼图')
# 子图3
ax3 = p.add_subplot(2, 2, 3)
plt.pie(values[0, 6:], explode=explode2, labels=label2, autopct='%1.1f%%')
plt.title('2000年第一季度国民生产总值产业构成分布饼图')
# 子图4
ax4 = p.add_subplot(2, 2, 4)
plt.pie(values[-1, 6:], explode=explode2, labels=label2, autopct='%1.1f%%')
plt.title('2000年第一季度国民生产总值产业构成分布饼图')
#保存并显示图形
plt.savefig('国民生产总值产业构成分布饼图.png')
plt.show()

任务3:

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

plt.figure(figsize=(6, 6))
data = np.load('35data.npz/国民经济核算季度数据.npz', allow_pickle=True)
name = data['columns']
values = data['values']

label1 = ['第一产业', '第二产业', '第三产业']
label2 = ['农业', '工业', '建筑', '批发', '交通', '餐饮', '金融', '房地产', '其他']

gdp1 = (list(values[:, 3]), list(values[:, 4]), list(values[:, 5]))
gdp2 = ([list(values[:, i]) for i in range(6, 15)])
p = plt.figure(figsize=(8, 8))

# 子图1
ax1 = p.add_subplot(2, 1, 1)
plt.boxplot(gdp1, notch=True, labels=label1, meanline=True)
plt.title('2000-2017年各产业国民生产总值箱线图')
plt.ylabel('生产总值(亿元)')
# 子图2
ax2 = p.add_subplot(2, 1, 2)
plt.boxplot(gdp2, notch=True, labels=label2, meanline=True)
plt.title('2000-2017年各产业国民生产总值箱线图')
plt.xlabel('行业')
plt.ylabel('生产总值(亿元)')
plt.savefig('2000-2017年各产业过敏生产总值箱线图.png')
plt.show()

实训

需求说明:

人口数据总共拥有6个特征,分别为年末总人口、男性人口、女性人口、城镇人口、乡村人口和年份。查看各个特征随着时间推移发生的变化情况可以分析出未来男女人口比例、城乡人口变化的方向。

具体步骤:

(1)使用NumPy库读取人口数据。
(2)创建画布,并添加子图。
(3)在两个子图上分别绘制散点图和折线图。
(4)保存,显示图片。
(5)分析未来人口变化趋势。

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('Data/populations.npz', allow_pickle=True)
feature_names = data['feature_names']
data = data['data']
# for i in data:
#     print(i)
p = plt.figure(figsize=(10, 9))
# 子图1
ax1 = p.add_subplot(2, 1, 1)
plt.scatter(range(data.shape[0] - 2), data[:-2, 1], marker='o', c='r')
plt.scatter(range(data.shape[0] - 2), data[:-2, 2], marker='D', c='b')
plt.scatter(range(data.shape[0] - 2), data[:-2, 3], marker='v', c='y')
plt.scatter(range(data.shape[0] - 2), data[:-2, 4], marker='+', c='c')
plt.scatter(range(data.shape[0] - 2), data[:-2, 5], marker='p', c='g')
plt.xlabel('时间-年份')
plt.ylabel('人口数(万人)')
plt.xticks(range(data.shape[0] - 2), data[:-2, 0], rotation=45)
plt.title('1996~2015年各特征人口变化散点图')
plt.legend(['年末人口', '男性人口', '女性人口', '城镇人口', '乡村人口和年份', '年份'])
# 子图2
ax2 = p.add_subplot(2, 1, 2)
plt.plot(range(data.shape[0] - 2), data[:-2, 1], c='r', linestyle='--')
plt.plot(range(data.shape[0] - 2), data[:-2, 2], c='b', linestyle='--')
plt.plot(range(data.shape[0] - 2), data[:-2, 3], c='y', linestyle='--')
plt.plot(range(data.shape[0] - 2), data[:-2, 4], c='g', linestyle='--')
plt.plot(range(data.shape[0] - 2), data[:-2, 5], c='c', linestyle='--')
plt.legend(['年末总人口', '男性人口', '女性人口', '城镇人口', '乡村人口'])
plt.xlabel('时间-年份')
plt.ylabel('人口数(万人)')
plt.xticks(range(data.shape[0] - 2), data[:-2, 0], rotation=45)
plt.title('1996-2015年各特征人口数折线图')
plt.show()

实训2

需求说明:

通过绘制各年份男女人口数目及城乡人口数目的直方图,男女人口比例及城乡人口比例的饼图可以发现人口结构的变化。而绘制每个特征的箱线图则可以发现不同特征增长或者减少的速率是否变得缓慢。

实现步骤:

(1)创建3幅画布并添加对应数目的子图。
(2)在每一幅子图上绘制对应的图形。
(3)保存和显示图形。
(4)根据图形,分析我国人口结构变化情况以及变化速率的增减状况。

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('Data/populations.npz', allow_pickle=True)
feature_names = data['feature_names']
data = data['data']
pt = plt.figure(figsize=(12, 11))

# 创建子图1
ax1 = pt.add_subplot(2, 1, 1)
plt.bar(range(data.shape[0] - 2), data[:-2, 2], width=0.5)
plt.xticks(range(data.shape[0] - 2), data[:-2, 0], rotation=45)
plt.xlabel('1996~2015年男性人口总数')
plt.ylabel('人口数据特征')
plt.title('1996~2015年人口数据特征间的关系的直方图')

# 创建子图2
ax2 = pt.add_subplot(2, 2, 2)
plt.bar(range(data.shape[0] - 2), data[:-2, 3], width=0.5)
plt.xticks(range(data.shape[0] - 2), data[:-2, 0], rotation=45)
plt.xlabel('1996-2015年女性人口数目')
plt.ylabel('人口数目(万人)')

# 创建子图3
ax3 = pt.add_subplot(2, 2, 3)
plt.bar(range(data.shape[0] - 2), data[:-2, 4], width=0.5)
plt.xticks(range(data.shape[0] - 2), data[:-2, 0], rotation=45)
plt.xlabel('1996-2015年城市人口数目')
plt.ylabel('人口数目(万人)')

# 创建子图4
ax4 = pt.add_subplot(2, 2, 4)
plt.bar(range(data.shape[0] - 2), data[:-2, 5], width=0.5)
plt.xticks(range(data.shape[0] - 2), data[:-2, 0], rotation=45)
plt.xlabel('1996-2015年乡村人口数目')
plt.ylabel('人口数目(万人)')
plt.show()

# 绘制饼图
import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('Data/populations.npz', allow_pickle=True)
feature_names = data['feature_names']
data = data['data']

pt2 = plt.figure(figsize=(12, 10))
# 创建子图1
ax1 = pt2.add_subplot(2, 2, 1)
plt.pie(data[:-2, 2], labels=data[:-2, 0], autopct='%1.1f%%')
plt.title('1996-2015年男性人口比例')

# 创建子图2
ax2 = pt2.add_subplot(2, 2, 2)
plt.pie(data[:-2, 3], labels=data[:-2, 0], autopct='%1.1f%%')
plt.title('1996-2015年女性人口比例')
# 创建子图3
ax3 = pt2.add_subplot(2, 2, 3)
plt.pie(data[:-2, 4], labels=data[:-2, 0], autopct='%1.1f%%')
plt.title('1996-2015年城市人口比例')

# 创建子图4
ax4 = pt2.add_subplot(2, 2, 4)
plt.pie(data[:-2, 5], labels=data[:-2, 0], autopct='%1.1f%%')
plt.title('1996-2015年乡村人口比例')
plt.show()

# 绘制箱线图
import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = 'SimHei'  # 汉字字体,优先使用楷体,如果找不到楷体,则使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 这两行需要手动设置

data = np.load('Data/populations.npz', allow_pickle=True)
feature_names = data['feature_names']
data = data['data']

pt3 = plt.figure(figsize=(12, 10))
label = ['年末总人口', '男性人口', '女性人口', '城镇人口', '乡村人口']
plt.boxplot(([list(data[:-2, i]) for i in range(1, 6)]), labels=label, meanline=True)
plt.title('1996-2015年各特征人口数线箱图')
plt.ylabel('人口数(万人)')
plt.show()

到此这篇关于Python数据分析应用之Matplotlib数据可视化详情的文章就介绍到这了,更多相关Python Matplotlib可视化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python利用matplotlib模块数据可视化绘制3D图

    目录 前言 1 matplotlib绘制3D图形 2 绘制3D画面图 2.1 源码 2.2 效果图 3 绘制散点图 3.1 源码 3.2 效果图 4 绘制多边形 4.1 源码 4.2 效果图 5 三个方向有等高线的3D图 5.1 源码 5.2 效果图 6 三维柱状图 6.1 源码 6.2 效果图 7 补充图 7.1 源码 7.2 效果图 总结 前言 matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D.文字Text.刻度等在内存中都有一个对象与之

  • Python数据可视化之用Matplotlib绘制常用图形

    一.散点图 散点图用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式. 特点:判断变量之间是否存在数量关联趋势,表示离群点的分布规律. 散点图绘制: plt.scatter(x,y) # 以默认的形状颜色绘制散点图 实例: 假设我们获取到了上海2020年5,10月份每天白天的最高气温(分别位于列表a.b),那么此时如何观察气温和随时间变化的某种规律. # 绘制图形所需的数据 y_5 = [11,17,16,11,12,11,12,13,10,14,8

  • python Matplotlib数据可视化(1):简单入门

    1 matplot入门指南 matplotlib是Python科学计算中使用最多的一个可视化库,功能丰富,提供了非常多的可视化方案,基本能够满足各种场景下的数据可视化需求.但功能丰富从另一方面来说也意味着概念.方法.参数繁多,让许多新手望而却步. 据我了解,大部分人在对matplotlib接触不深时都是边画图边百度,诸如这类的问题,我想大家都似曾相识:Python如何画散点图,matplotlib怎么将坐标轴标签旋转45度,怎么设置图例字体大小等等.无论针对哪一个问题,往往都有多种解决方法,搜索

  • Python数据可视化编程通过Matplotlib创建散点图代码示例

    Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D方面).该项目是由JohnHunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口.如果结合PythonIDE使用比如PyCharm,matplotlib还具有诸如缩放和平移等交互功能.它不仅支持各种操作系统上许多不同的GUI后端,而且还能将图片导出为各种常见的矢量(vector)和光栅(raster)图:PDF.SVG.JPG.PNG.BMP.GIF等.此外,matp

  • python Matplotlib数据可视化(2):详解三大容器对象与常用设置

    上一篇博客中说到,matplotlib中所有画图元素(artist)分为两类:基本型和容器型.容器型元素包括三种:figure.axes.axis.一次画图的必经流程就是先创建好figure实例,接着由figure去创建一个或者多个axes,然后通过axes实例调用各种方法来添加各种基本型元素,最后通过axes实例本身的各种方法亦或者通过axes获取axis实例实现对各种元素的细节操控. 本篇博客继续上一节的内容,展开介绍三大容器元素创建即通过三大容器可以完成的常用设置. 1 figure 1.

  • Python数据可视化教程之Matplotlib实现各种图表实例

    前言 数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图.柱状图.线图等图表制作是一个数据分析师必备的技能.Python有两个比较出色的图表制作框架,分别是Matplotlib和Pyechart.本文主要讲述使用Matplotlib制作各种数据图表. Matplotlib是最流行的用于绘制2D数据图表的Python库,能够在各种平台上使用,可以绘制散点图.柱状图.饼图等. 1.柱状图 是一种以长方形或长方体的高度为变量的表达图形的统计报告图,由一系列高度不等的纵向条纹

  • 通过python的matplotlib包将Tensorflow数据进行可视化的方法

    使用matplotlib中的一些函数将tensorflow中的数据可视化,更加便于分析 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) bi

  • Python 数据可视化之Matplotlib详解

    目录 使用的数据库 tips 数据库 Matplotlib 散点图 折线图 条形图 直方图 总结 在深入研究这些库之前,首先,我们需要一个数据库来绘制数据.我们将在本完整教程中使用 tips database.让我们讨论一下这个数据库的简介. 使用的数据库 tips 数据库 tips 数据库是20世纪90年代初期顾客在餐厅的两个半月的小费记录.它包含 6 列,例如 total_bill.tip.sex.smoker.day.time.size. 您可以从这里下载 tips 数据库. 例子: im

  • python数据可视化之matplotlib.pyplot基础以及折线图

    不论是数据挖掘还是数据建模,都免不了数据可视化的问题.对于Python来说,Matplotlib是最著名的绘图库,它主要用于二维绘图,当然它也可以进行简单的三维绘图(基于spyder). - 模块引用 import matplotlib.pyplot as plt #引用画图库中的pyplot模块 -折线条图 语法 import matplotlib.pyplot as plt data=[1,2,3,4,5,4,2,4,6,7] #随便创建了一个数据 plt.plot(data) #引用画图库

  • Python数据可视化之使用matplotlib绘制简单图表

    目录 一.绘制折线图 二.绘制柱形图或堆积图形 三.绘制条形图或堆积条形图 四.绘制堆积面积图 五.绘制直方图 六.绘制饼图或者圆环图 七.绘制散点图或气泡图 八.绘制箱形图 九.绘制雷达图 十.绘制误差棒图 总结 一.绘制折线图 使用plot()绘制折线图 常用的参数: x:表示x轴的数据 y:表示y轴的数据 fmt:表示快速设置条样式的格式字符串. label:表示应用于图例的标签文本. plot()会返回一个包含Line2D类对象(代表线条)的列表. plot()函数的语法格式: plot

随机推荐