详解pytorch中squeeze()和unsqueeze()函数介绍
squeeze的用法主要就是对数据的维度进行压缩或者解压。
先看torch.squeeze() 这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,比如是一行或者一列这种,一个一行三列(1,3)的数去掉第一个维数为一的维度之后就变成(3)行。squeeze(a)就是将a中所有为1的维度删掉。不为1的维度没有影响。a.squeeze(N) 就是去掉a中指定的维数为一的维度。还有一种形式就是b=torch.squeeze(a,N) a中去掉指定的定的维数为一的维度。
再看torch.unsqueeze()这个函数主要是对数据维度进行扩充。给指定位置加上维数为一的维度,比如原本有个三行的数据(3),在0的位置加了一维就变成一行三列(1,3)。a.squeeze(N) 就是在a中指定位置N加上一个维数为1的维度。还有一种形式就是b=torch.squeeze(a,N) a就是在a中指定位置N加上一个维数为1的维度
一、unsqueeze()函数
1. 首先初始化一个a
可以看出a的维度为(2,3)
2. 在第二维增加一个维度,使其维度变为(2,1,3)
可以看出a的维度已经变为(2,1,3)了,同样如果需要在倒数第二个维度上增加一个维度,那么使用b.unsqueeze(-2)
二、squeeze()函数介绍
1. 首先得到一个维度为(1,2,3)的tensor(张量)
由图中可以看出c的维度为(1,2,3)
2.下面使用squeeze()函数将第一维去掉
可见,维度已经变为(2,3)
3.另外
可以看出维度并没有变化,仍然为(1,2,3),这是因为只有维度为1时才会去掉。
到此这篇关于详解pytorch中squeeze()和unsqueeze()函数介绍的文章就介绍到这了,更多相关pytorch中squeeze()和unsqueeze()内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
相关推荐
-
PyTorch笔记之scatter()函数的使用
scatter() 和 scatter_() 的作用是一样的,只不过 scatter() 不会直接修改原来的 Tensor,而 scatter_() 会 PyTorch 中,一般函数加下划线代表直接在原来的 Tensor 上修改 scatter(dim, index, src) 的参数有 3 个 dim:沿着哪个维度进行索引 index:用来 scatter 的元素索引 src:用来 scatter 的源元素,可以是一个标量或一个张量 这个 scatter可以理解成放置元素或者修改元素 简单说就
-
pytorch 中pad函数toch.nn.functional.pad()的用法
padding操作是给图像外围加像素点. 为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理. 这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框.具体代码如下: import torch.nn,functional as F import torch from PIL import Image im=Image.open("heibai.jpg",'r') X=torch.Tensor(np.asarray(im)) print("shape:
-
pytorch AvgPool2d函数使用详解
我就废话不多说了,直接上代码吧! import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np input = Variable(torch.Tensor([[[1, 3, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7]], [[1, 3, 3, 4, 5, 6, 7], [1, 2, 3
-
Pytorch 的损失函数Loss function使用详解
1.损失函数 损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一.另一个必不可少的要素是优化器. 损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等. 损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较). 损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数. 我们先定义两个二维数组,然后用不同的损失函数计算其损失值. import
-
Pytorch上下采样函数--interpolate用法
最近用到了上采样下采样操作,pytorch中使用interpolate可以很轻松的完成 def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None): r""" 根据给定 size 或 scale_factor,上采样或下采样输入数据input. 当前支持 temporal, spatial 和 volumetric 输入数据的上采样,其shape 分别为:3-
-
pytorch中torch.max和Tensor.view函数用法详解
torch.max() 1. torch.max()简单来说是返回一个tensor中的最大值. 例如: >>> si=torch.randn(4,5) >>> print(si) tensor([[ 1.1659, -1.5195, 0.0455, 1.7610, -0.2064], [-0.3443, 2.0483, 0.6303, 0.9475, 0.4364], [-1.5268, -1.0833, 1.6847, 0.0145, -0.2088], [-0.86
-
Pytorch中index_select() 函数的实现理解
函数形式: index_select( dim, index ) 参数: dim:表示从第几维挑选数据,类型为int值: index:表示从第一个参数维度中的哪个位置挑选数据,类型为torch.Tensor类的实例: 刚开始学习pytorch,遇到了index_select(),一开始不太明白几个参数的意思,后来查了一下资料,算是明白了一点. a = torch.linspace(1, 12, steps=12).view(3, 4) print(a) b = torch.index_selec
-
PyTorch中常用的激活函数的方法示例
神经网络只是由两个或多个线性网络层叠加,并不能学到新的东西,简单地堆叠网络层,不经过非线性激活函数激活,学到的仍然是线性关系. 但是加入激活函数可以学到非线性的关系,就具有更强的能力去进行特征提取. 构造数据 import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt x = torch.linspace(-5, 5, 200) #
-
pytorch之Resize()函数具体使用详解
Resize函数用于对PIL图像的预处理,它的包在: from torchvision.transforms import Compose, CenterCrop, ToTensor, Resize 使用如: def input_transform(crop_size, upscale_factor): return Compose([ CenterCrop(crop_size), Resize(crop_size // upscale_factor), ToTensor(), ]) 而Resi
-
PyTorch中topk函数的用法详解
听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index. 用法 torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) input:一个tensor数据 k:指明是得到前k个数据以及其index dim: 指定在哪个维度上排序, 默认是最后一个维度 largest:如果为True,按照大到小排序: 如果为False,按照小到大排序
随机推荐
- docker中修改镜像容器的存放目录的方法
- Javascript中的迭代、归并方法详解
- 4种VPS主机技术原理及优缺点(VPS独享主机技术原理)
- 深入理解Struts2国际化信息机制
- java实现文件变化监控的方法(推荐)
- 打造通用的匀速运动框架(实例讲解)
- JS 中LocalStorage和SessionStorage的使用
- gulp-uglify 与gulp.watch()配合使用时报错(重复压缩问题)
- php 保留字列表
- 初学Java的备忘录
- JS中处理时间之setUTCMinutes()方法的使用
- PHP统计数值数组中出现频率最多的10个数字的方法
- 如何通过非数字与字符的方式实现PHP WebShell详解
- jb51生成所有页面的效果+分页生成 原创
- 动态给表添加删除字段并同时修改它的插入更新存储过程
- 微信小程序 Buffer缓冲区的详解
- mysql优化取随机数据慢的方法
- js 绑定带参数的事件以及手动触发事件
- Javascript this关键字使用分析
- 多图幻灯Wipe擦洗效果