python识别验证码的思路及解决方案

1、介绍

在爬虫中经常会遇到验证码识别的问题,现在的验证码大多分计算验证码、滑块验证码、识图验证码、语音验证码等四种。本文就是识图验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库。

识别验证码通常是这几个步骤:

(1)灰度处理

(2)二值化

(3)去除边框(如果有的话)

(4)降噪

(5)切割字符或者倾斜度矫正

(6)训练字体库

(7)识别

这6个步骤中前三个步骤是基本的,4或者5可根据实际情况选择是否需要。

经常用的库有pytesseract(识别库)、OpenCV(高级图像处理库)、imagehash(图片哈希值库)、numpy(开源的、高性能的Python数值计算库)、PIL的 Image,ImageDraw,ImageFile等。

2、实例

以某网站登录的验证码识别为例:具体过程和上述的步骤稍有不同。

首先分析一下,验证码是由4个从0到9等10个数字组成的,那么从0到9这个10个数字没有数字只有第一、第二、第三和第四等4个位置。那么计算下来共有40个数字位置,如下:

那么接下来就要对验证码图片进行降噪、分隔得到上面的图片。以这40个图片集作为基础。

对要验证的验证码图片进行降噪、分隔后获取四个类似上面的数字图片、通过和上面的比对就可以知道该验证码是什么了。

以上面验证码2837为例:

1、图片降噪

2、图片分隔

3、图片比对

通过比验证码降噪、分隔后的四个数字图片,和上面的40个数字图片进行哈希值比对,设置一个误差,max_dif:允许最大hash差值,越小越精确,最小为0。

这样四个数字图片通过比较后获取对应是数字,连起来,就是要获取的验证码。

完整代码如下:

#coding=utf-8
import os
import re
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import time
from selenium.webdriver.common.action_chains import ActionChains
import collections
import mongoDbBase
import numpy
import imagehash
from PIL import Image,ImageFile
import datetime
class finalNews_IE:
    def __init__(self,strdate,logonUrl,firstUrl,keyword_list,exportPath,codepath,codedir):
        self.iniDriver()
        self.db = mongoDbBase.mongoDbBase()
        self.date = strdate
        self.firstUrl = firstUrl
        self.logonUrl = logonUrl
        self.keyword_list = keyword_list
        self.exportPath = exportPath
        self.codedir = codedir
        self.hash_code_dict ={}
        for f in range(0,10):
            for l in range(1,5):
                file = os.path.join(codedir, "codeLibrary\code" +  str(f) + '_'+str(l) + ".png")
                # print(file)
                hash = self.get_ImageHash(file)
                self.hash_code_dict[hash]= str(f)
    def iniDriver(self):
        # 通过配置文件获取IEDriverServer.exe路径
        IEDriverServer = "C:\Program Files\Internet Explorer\IEDriverServer.exe"
        os.environ["webdriver.ie.driver"] = IEDriverServer
        self.driver = webdriver.Ie(IEDriverServer)
    def WriteData(self, message, fileName):
        fileName = os.path.join(os.getcwd(), self.exportPath + '/' + fileName)
        with open(fileName, 'a') as f:
            f.write(message)
    # 获取图片文件的hash值
    def get_ImageHash(self,imagefile):
        hash = None
        if os.path.exists(imagefile):
            with open(imagefile, 'rb') as fp:
                hash = imagehash.average_hash(Image.open(fp))
        return hash
    # 点降噪
    def clearNoise(self, imageFile, x=0, y=0):
        if os.path.exists(imageFile):
            image = Image.open(imageFile)
            image = image.convert('L')
            image = numpy.asarray(image)
            image = (image > 135) * 255
            image = Image.fromarray(image).convert('RGB')
            # save_name = "D:\work\python36_crawl\Veriycode\mode_5590.png"
            # image.save(save_name)
            image.save(imageFile)
            return image
    #切割验证码
    # rownum:切割行数;colnum:切割列数;dstpath:图片文件路径;img_name:要切割的图片文件
    def splitimage(self, imagePath,imageFile,rownum=1, colnum=4):
        img = Image.open(imageFile)
        w, h = img.size
        if rownum <= h and colnum <= w:
            print('Original image info: %sx%s, %s, %s' % (w, h, img.format, img.mode))
            print('开始处理图片切割, 请稍候...')
            s = os.path.split(imageFile)
            if imagePath == '':
                dstpath = s[0]
            fn = s[1].split('.')
            basename = fn[0]
            ext = fn[-1]
            num = 1
            rowheight = h // rownum
            colwidth = w // colnum
            file_list =[]
            for r in range(rownum):
                index = 0
                for c in range(colnum):
                    # (left, upper, right, lower)
                    # box = (c * colwidth, r * rowheight, (c + 1) * colwidth, (r + 1) * rowheight)
                    if index < 1:
                        colwid = colwidth + 6
                    elif index < 2:
                        colwid = colwidth + 1
                    elif index < 3:
                        colwid = colwidth
                    box = (c * colwid, r * rowheight, (c + 1) * colwid, (r + 1) * rowheight)
                    newfile = os.path.join(imagePath, basename + '_' + str(num) + '.' + ext)
                    file_list.append(newfile)
                    img.crop(box).save(newfile, ext)
                    num = num + 1
                    index += 1
            return file_list
    def compare_image_with_hash(self, image_hash1,image_hash2, max_dif=0):
        """
                max_dif: 允许最大hash差值, 越小越精确,最小为0
                推荐使用
                """
        dif = image_hash1 - image_hash2
        # print(dif)
        if dif < 0:
            dif = -dif
        if dif <= max_dif:
            return True
        else:
            return False
    # 截取验证码图片
    def savePicture(self):
        self.driver.get(self.logonUrl)
        self.driver.maximize_window()
        time.sleep(1)
        self.driver.save_screenshot(self.codedir +"\Temp.png")
        checkcode = self.driver.find_element_by_id("checkcode")
        location = checkcode.location  # 获取验证码x,y轴坐标
        size = checkcode.size  # 获取验证码的长宽
        rangle = (int(location['x']), int(location['y']), int(location['x'] + size['width']),
                  int(location['y'] + size['height']))  # 写成我们需要截取的位置坐标
        i = Image.open(self.codedir +"\Temp.png")  # 打开截图
        result = i.crop(rangle)  # 使用Image的crop函数,从截图中再次截取我们需要的区域
        filename = datetime.datetime.now().strftime("%M%S")
        filename =self.codedir +"\Temp_code.png"
        result.save(filename)
        self.clearNoise(filename)
        file_list = self.splitimage(self.codedir,filename)
        verycode =''
        for f in file_list:
            imageHash = self.get_ImageHash(f)
            for h,code in self.hash_code_dict.items():
                flag = self.compare_image_with_hash(imageHash,h,0)
                if flag:
                    # print(code)
                    verycode+=code
                    break
        print(verycode)
        self.driver.close()
   
    def longon(self):
        self.driver.get(self.logonUrl)
        self.driver.maximize_window()
        time.sleep(1)
        self.savePicture()
        accname = self.driver.find_element_by_id("username")
        # accname = self.driver.find_element_by_id("//input[@id='username']")
        accname.send_keys('ctrchina')
        accpwd = self.driver.find_element_by_id("password")
        # accpwd.send_keys('123456')
        code = self.getVerycode()
        checkcode = self.driver.find_element_by_name("checkcode")
        checkcode.send_keys(code)
        submit = self.driver.find_element_by_name("button")
        submit.click()

实例补充:

# -*- coding: utf-8 -*
import sys
reload(sys)
sys.setdefaultencoding( "utf-8" )
import re
import requests
import io
import os
import json
from PIL import Image
from PIL import ImageEnhance
from bs4 import BeautifulSoup

import mdata

class Student:
 def __init__(self, user,password):
 self.user = str(user)
 self.password = str(password)
 self.s = requests.Session()

 def login(self):
 url = "http://202.118.31.197/ACTIONLOGON.APPPROCESS?mode=4"
 res = self.s.get(url).text
 imageUrl = 'http://202.118.31.197/'+re.findall('<img src="(.+?)" width="55"',res)[0]
 im = Image.open(io.BytesIO(self.s.get(imageUrl).content))
 enhancer = ImageEnhance.Contrast(im)
 im = enhancer.enhance(7)
 x,y = im.size
 for i in range(y):
  for j in range(x):
  if (im.getpixel((j,i))!=(0,0,0)):
   im.putpixel((j,i),(255,255,255))
 num = [6,19,32,45]
 verifyCode = ""
 for i in range(4):
  a = im.crop((num[i],0,num[i]+13,20))
  l=[]
  x,y = a.size
  for i in range(y):
  for j in range(x):
   if (a.getpixel((j,i))==(0,0,0)):
   l.append(1)
   else:
   l.append(0)
  his=0
  chrr="";
  for i in mdata.data:
  r=0;
  for j in range(260):
   if(l[j]==mdata.data[i][j]):
   r+=1
  if(r>his):
   his=r
   chrr=i
  verifyCode+=chrr
  # print "辅助输入验证码完毕:",verifyCode
 data= {
 'WebUserNO':str(self.user),
 'Password':str(self.password),
 'Agnomen':verifyCode,
 }
 url = "http://202.118.31.197/ACTIONLOGON.APPPROCESS?mode=4"
 t = self.s.post(url,data=data).text
 if re.findall("images/Logout2",t)==[]:
  l = '[0,"'+re.findall('alert((.+?));',t)[1][1][2:-2]+'"]'+" "+self.user+" "+self.password+"\n"
  # print l
  # return '[0,"'+re.findall('alert((.+?));',t)[1][1][2:-2]+'"]'
  return [False,l]
 else:
  l = '登录成功 '+re.findall('!&nbsp;(.+?)&nbsp;',t)[0]+" "+self.user+" "+self.password+"\n"
  # print l
  return [True,l]

 def getInfo(self):
 imageUrl = 'http://202.118.31.197/ACTIONDSPUSERPHOTO.APPPROCESS'
 data = self.s.get('http://202.118.31.197/ACTIONQUERYBASESTUDENTINFO.APPPROCESS?mode=3').text #学籍信息
 data = BeautifulSoup(data,"lxml")
 q = data.find_all("table",attrs={'align':"left"})
 a = []
 for i in q[0]:
  if type(i)==type(q[0]) :
  for j in i :
   if type(j) ==type(i):
   a.append(j.text)
 for i in q[1]:
  if type(i)==type(q[1]) :
  for j in i :
   if type(j) ==type(i):
   a.append(j.text)
 data = {}
 for i in range(1,len(a),2):
  data[a[i-1]]=a[i]
 # data['照片'] = io.BytesIO(self.s.get(imageUrl).content)
 return json.dumps(data)

 def getPic(self):
 imageUrl = 'http://202.118.31.197/ACTIONDSPUSERPHOTO.APPPROCESS'
 pic = Image.open(io.BytesIO(self.s.get(imageUrl).content))
 return pic

 def getScore(self):
  score = self.s.get('http://202.118.31.197/ACTIONQUERYSTUDENTSCORE.APPPROCESS').text #成绩单
  score = BeautifulSoup(score, "lxml")
  q = score.find_all(attrs={'height':"36"})[0]
  point = q.text
  print point[point.find('平均学分绩点'):]
  table = score.html.body.table
  people = table.find_all(attrs={'height' : '36'})[0].string
  r = table.find_all('table',attrs={'align' : 'left'})[0].find_all('tr')
  subject = []
  lesson = []
  for i in r[0]:
  if type(r[0])==type(i):
   subject.append(i.string)
  for i in r:
  k=0
  temp = {}
  for j in i:
   if type(r[0])==type(j):
   temp[subject[k]] = j.string
   k+=1
  lesson.append(temp)
  lesson.pop()
  lesson.pop(0)
  return json.dumps(lesson)

 def logoff(self):
 return self.s.get('http://202.118.31.197/ACTIONLOGOUT.APPPROCESS').text

if __name__ == "__main__":
 a = Student(20150000,20150000)
 r = a.login()
 print r[1]
 if r[0]:
 r = json.loads(a.getScore())
 for i in r:
  for j in i:
  print i[j],
  print
 q = json.loads(a.getInfo())
 for i in q:
  print i,q[i]
 a.getPic().show()
 a.logoff()

到此这篇关于python识别验证码的思路及解决方案的文章就介绍到这了,更多相关python识别验证码的思路是什么内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python利用Tesseract识别验证码的方法示例

    无论是是自动化登录还是爬虫,总绕不开验证码,这次就来谈谈python中光学识别验证码模块tesserocr和pytesseract.tesserocr和pytesseract是Python的一个OCR识别库,但其实是对tesseract做的一层Python API封装,pytesseract是Google的Tesseract-OCR引擎包装器:所以它们的核心是tesseract,因此在安装tesserocr之前,我们需要先安装tesseract. 下载安装 下载地址:https://digi.b

  • Python完全识别验证码自动登录实例详解

    1.直接贴代码 #!C:/Python27 #coding=utf-8 from selenium import webdriver from selenium.webdriver.common.keys import Keys from pytesser import * from PIL import Image,ImageEnhance,ImageFilter from selenium.common.exceptions import NoSuchElementException,Tim

  • python识别验证码图片实例详解

    在编写自动化测试用例的时候,每次登录都需要输入验证码,后来想把让python自己识别图片里的验证码,不需要自己手动登陆,所以查了一下识别功能怎么实现,做一下笔记. 首选导入一些用到的库,re.Image.pytesseract.selenium.time import re # 用于正则 from PIL import Image # 用于打开图片和对图片处理 import pytesseract # 用于图片转文字 from selenium import webdriver # 用于打开网站

  • [机器视觉]使用python自动识别验证码详解

    前言 CAPTCHA全称Completely Automated Public Turing Test to Tell Computers and Humans Apart,即全自动区分人机的图灵测试.这也是验证码诞生的主要任务.但是随着近年来大数据运算和机器视觉的发展,用机器视觉识别图像已经变得非常容易,过去用于区分人机的验证码也开始变得不再安全. 接下来就让我们从零开始,深入图像处理和算法构建,来看看使用机器视觉来识别过时的验证码( 如下所示 )究竟可以有多简单. 载入需要的程序包 & 设置

  • python使用tensorflow深度学习识别验证码

    本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下: 除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码. 此篇代码大部分是转载的,只改了很少地方. 代码是运行在linux环境,tessorflow没有支持windows的python 2.7. gen_captcha.py代码. #coding=utf-8 from captcha.image import ImageCaptcha # pi

  • python识别验证码的思路及解决方案

    1.介绍 在爬虫中经常会遇到验证码识别的问题,现在的验证码大多分计算验证码.滑块验证码.识图验证码.语音验证码等四种.本文就是识图验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库. 识别验证码通常是这几个步骤: (1)灰度处理 (2)二值化 (3)去除边框(如果有的话) (4)降噪 (5)切割字符或者倾斜度矫正 (6)训练字体库 (7)识别 这6个步骤中前三个步骤是基本的,4或者5可根据实际情况选择是否需要. 经常用的库有pytesseract(

  • Python识别验证码的实现示例

    废话不多说,直接开干! 首先安装库 pip install pytesseract pip install PILLOW 然后按照tesseract程序下载安装 tessercat下载地址:https://digi.bib.uni-mannheim.de/tesseract/ //请依据自己的操作系统下载exe文件安装 用户变量,系统变量都添加:PATH C:\Program Files (x86)\Tesseract-OCR; //这是tesseract的安装目录 系统变量添加:TESSDAT

  • Python破解BiliBili滑块验证码的思路详解(完美避开人机识别)

    准备工作 B站登录页 https://passport.bilibili.com/login python3 pip install selenium (webdriver框架) pip install PIL (图片处理) chrome driver:http://chromedriver.storage.googleapis.com/index.html firefox driver:https://github.com/mozilla/geckodriver/releases B站的滑块验

  • 谈谈Python进行验证码识别的一些想法

    用python加"验证码"为关键词在baidu里搜一下,可以找到很多关于验证码识别的文章.我大体看了一下,主要方法有几类:一类是通过对图片进行处理,然后利用字库特征匹配的方法,一类是图片处理后建立字符对应字典,还有一类是直接利用ocr模块进行识别.不管是用什么方法,都需要首先对图片进行处理,于是试着对下面的验证码进行分析. 一.图片处理 这个验证码中主要的影响因素是中间的曲线,首先考虑去掉图片中的曲线.考虑了两种算法: 第一种是首先取到曲线头的位置,即x=0时,黑点的位置.然后向后移动

  • python简单验证码识别的实现方法

    利用SVM向量机进行4位数字验证码识别 主要是思路和步骤如下: 一,素材收集 检查环境是否包含有相应的库: 1.在cmd中,通过 pip list命令查看安装的库 2.再使用pip installRequests 安装Requests库 3.再次使用pip list 命令 4.利用python获取验证码资源 编写代码:_DownloadPic.py #!/usr/bin/nev python3 #利用python从站点下载验证码图片 import requests ## 1.在 http://w

  • Python实现验证码识别

    大致介绍 在python爬虫爬取某些网站的验证码的时候可能会遇到验证码识别的问题,现在的验证码大多分为四类: 1.计算验证码       2.滑块验证码 3.识图验证码 4.语音验证码 这篇博客主要写的就是识图验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库. 识别验证码通常是这几个步骤: 1.灰度处理 2.二值化 3.去除边框(如果有的话) 4.降噪 5.切割字符或者倾斜度矫正 6.训练字体库 7.识别 这6个步骤中前三个步骤是基本的,4或者5

  • Python网站验证码识别

    0x00 识别涉及技术 验证码识别涉及很多方面的内容.入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足. 验证码图像处理 验证码图像识别技术主要是操作图片内的像素点,通过对图片的像素点进行一系列的操作,最后输出验证码图像内的每个字符的文本矩阵. 读取图片 图片降噪 图片切割 图像文本输出 验证字符识别 验证码内的字符识别主要以机器学习的分类算法来完成,目前我所利用的字符识别的算法为KNN(K邻近算法)和SVM (支持向量机算法),后面我 会对这两个算法的适用场景进行详细描述.

随机推荐