python数字图像处理之图像的批量处理
目录
- 正文
- 图片集合函数
- 批量读取
- 批量转换为灰度图
- 批量保存
正文
有些时候,我们不仅要对一张图片进行处理,可能还会对一批图片处理。这时候,我们可以通过循环来执行处理,也可以调用程序自带的图片集合来处理。
图片集合函数
skimage.io.ImageCollection(load_pattern,load_func=None)
这个函数是放在io模块内的,带两个参数,第一个参数load_pattern, 表示图片组的路径,可以是一个str字符串。第二个参数load_func是一个回调函数,我们对图片进行批量处理就可以通过这个回调函数实现。回调函数默认为imread(),即默认这个函数是批量读取图片。
先看一个例子:
import skimage.io as io from skimage import data_dir str=data_dir + '/*.png' coll = io.ImageCollection(str) print(len(coll))
显示结果为25, 说明系统自带了25张png的示例图片,这些图片都读取了出来,放在图片集合coll里。如果我们想显示其中一张图片,则可以在后加上一行代码:
io.imshow(coll[10])
显示为:
批量读取
如果一个文件夹里,我们既存放了一些jpg格式的图片,又存放了一些png格式的图片,现在想把它们全部读取出来,该怎么做呢?
import skimage.io as io from skimage import data_dir str='d:/pic/*.jpg:d:/pic/*.png' coll = io.ImageCollection(str) print(len(coll))
注意这个地方'd:/pic/*.jpg:d:/pic/*.png' ,是两个字符串合在一起的,
第一个是'd:/pic/*.jpg',
第二个是'd:/pic/*.png' ,
合在一起后,中间用冒号来隔开,这样就可以把d:/pic/文件夹下的jpg和png格式的图片都读取出来。
如果还想读取存放在其它地方的图片,也可以一并加进去,只是中间同样用冒号来隔开。
io.ImageCollection()这个函数省略第二个参数,就是批量读取。如果我们不是想批量读取,而是其它批量操作,如批量转换为灰度图,那又该怎么做呢?
批量转换为灰度图
那就需要先定义一个函数,然后将这个函数作为第二个参数,如:
from skimage import data_dir,io,color def convert_gray(f): rgb=io.imread(f) return color.rgb2gray(rgb) str=data_dir+'/*.png' coll = io.ImageCollection(str,load_func=convert_gray) io.imshow(coll[10])
这种批量操作对视频处理是极其有用的,因为视频就是一系列的图片组合
from skimage import data_dir,io,color class AVILoader: video_file = 'myvideo.avi' def __call__(self, frame): return video_read(self.video_file, frame) avi_load = AVILoader() frames = range(0, 1000, 10) # 0, 10, 20, ... ic =io.ImageCollection(frames, load_func=avi_load)
这段代码的意思,就是将myvideo.avi这个视频中每隔10帧的图片读取出来,放在图片集合中。
得到图片集合以后,我们还可以将这些图片连接起来,构成一个维度更高的数组,连接图片的函数为:
skimage.io.concatenate_images(ic)
带一个参数,就是以上的图片集合,如:
from skimage import data_dir,io,color coll = io.ImageCollection('d:/pic/*.jpg') mat=io.concatenate_images(coll)
使用concatenate_images(ic)函数的前提是读取的这些图片尺寸必须一致,否则会出错。我们看看图片连接前后的维度变化:
from skimage import data_dir,io,color coll = io.ImageCollection('d:/pic/*.jpg') print(len(coll)) #连接的图片数量 print(coll[0].shape) #连接前的图片尺寸,所有的都一样 mat=io.concatenate_images(coll) print(mat.shape) #连接后的数组尺寸
显示结果:
2
(870, 580, 3)
(2, 870, 580, 3)
可以看到,将2个3维数组,连接成了一个4维数组
如果我们对图片进行批量操作后,想把操作后的结果保存起来,也是可以办到的。
批量保存
例:把系统自带的所有png示例图片,全部转换成256*256的jpg格式灰度图,保存在d:/data/文件夹下
改变图片的大小,我们可以使用tranform模块的resize()函数,后续会讲到这个模块。
from skimage import data_dir,io,transform,color import numpy as np def convert_gray(f): rgb=io.imread(f) #依次读取rgb图片 gray=color.rgb2gray(rgb) #将rgb图片转换成灰度图 dst=transform.resize(gray,(256,256)) #将灰度图片大小转换为256*256 return dst str=data_dir+'/*.png' coll = io.ImageCollection(str,load_func=convert_gray) for i in range(len(coll)): io.imsave('d:/data/'+np.str(i)+'.jpg',coll[i]) #循环保存图片
结果:
以上就是python数字图像处理之图像的批量处理的详细内容,更多关于python数字图像批量处理的资料请关注我们其它相关文章!