R语言中corrplot标题居中及eps格式输出

目录
  • 相关性图
    • corrplot
    • ggcorr
  • eps格式输出图像

相关性图

R中相关性图有两种比较简单的画法,一个是使用corrplot包,另一个则是使用ggcorr,利用这两个包,即可绘制出非常美观的相关性图了。这里不对两个包进行细讲,仅仅只是针对在使用过程中遇到的问题进行解决。

corrplot

在使用corrplot进行绘图时,如果我们想要添加一个标题,直接使用title =这个参数会生成如下的结果,我们以示例代码为例:

M <- cor(mtcars)
corrplot(M, title = 'mtcars')

标题不能显示完全。此时我们只需要添加参数:mar=c(0, 0, 1, 0)即可,代码及生成的结果如下:

corrplot(M, title = 'mtcars', mar=c(0, 0, 1, 0))

另一个问题是,如果我们想要将旁边红色的变量名称进行隐藏需要如何修改?

同样也是仅仅只添加一行参数即可:, tl.pos = 'n'

corrplot(M, title = 'mtcars', mar=c(0, 0, 1, 0), tl.pos = 'n')

参考:How to have R corrplot title position correct?

ggcorr

这种方法虽然基于个人比较喜欢的ggplot,但绘制出来的相关性图感觉并没有corrplot使用起来那么便捷,许多设定都很难进行调整。因此在本博客就不进行深入探究,仅仅只是在下面附上几个相关的网址:

ggcorr: correlation matrixes with ggplot2

ggcorr - Plot a correlation matrix with ggplot2

eps格式输出图像

使用eps格式输出图像只需用如下的代码即可。(可使用getwd()查看储存的路径)

setEPS()
postscript("whatever.eps")
plot(rnorm(100), main="Hey Some Data") # 自己的绘图函数
dev.off()

参考:Export a graph to .eps file with R

以上就是R语言中corrplot标题居中及eps格式输出的详细内容,更多关于R中corrplot标题居中eps格式输出的资料请关注我们其它相关文章!

(0)

相关推荐

  • R语言与格式,日期格式,格式转化的操作

    R语言的基础包中提供了两种类型的时间数据,一类是Date日期数据,它不包括时间和时区信息,另一类是POSIXct/POSIXlt类型数据,其中包括了日期.时间和时区信息. 基本总结如下: 日期data,存储的是天: 时间POSIXct 存储的是秒,POSIXlt 打散,年月日不同: 日期-时间=不可运算. 一般来讲,R语言中建立时序数据是通过字符型转化而来,但由于时序数据形式多样,而且R中存贮格式也是五花八门,例如Date/ts/xts/zoo/tis/fts等等.lubridate包(后续有介

  • R语言格式化输出sprintf实例讲解

    用%s替代字符串 name <- 'max' sprintf('my name is %s',name) [1] "my name is max" 用%d替代整数 age <- 18 sprintf('age:%d',age) [1] "age:18" d前面添加数字n,可以添加n-替代数字位数的空格 sprintf('age:%3d',age) [1] "age: 18" d前面添加0加上数字n,可以添加n-替代数字位数的0 spr

  • R语言中corrplot标题居中及eps格式输出

    目录 相关性图 corrplot ggcorr eps格式输出图像 相关性图 R中相关性图有两种比较简单的画法,一个是使用corrplot包,另一个则是使用ggcorr,利用这两个包,即可绘制出非常美观的相关性图了.这里不对两个包进行细讲,仅仅只是针对在使用过程中遇到的问题进行解决. corrplot 在使用corrplot进行绘图时,如果我们想要添加一个标题,直接使用title =这个参数会生成如下的结果,我们以示例代码为例: M <- cor(mtcars) corrplot(M, titl

  • 详解R语言中的PCA分析与可视化

    1. 常用术语 (1)标准化(Scale) 如果不对数据进行scale处理,本身数值大的基因对主成分的贡献会大.如果关注的是变量的相对大小对样品分类的贡献,则应SCALE,以防数值高的变量导入的大方差引入的偏见.但是定标(scale)可能会有一些负面效果,因为定标后变量之间的权重就是变得相同.如果我们的变量中有噪音的话,我们就在无形中把噪音和信息的权重变得相同,但PCA本身无法区分信号和噪音.在这样的情形下,我们就不必做定标. (2)特征值 (eigen value) 特征值与特征向量均为矩阵分

  • R语言中的vector(向量),array(数组)使用总结

    对于那些有一点编程经验的人来说,vector,matrix,array,list,data.frame就相当于编程语言中的容器,因为只是将R看做数据处理工具所以它们的底层是靠什么实现的,内存怎么处理的具体也不要深究. R语言很奇怪的是它是面向对象的语言,所以经常会调用系统的方法,而且更奇怪的是总是调用"谓语"的方法,用起来像是写句子一样,记起来真是让人费解.比如is.vector(),read.table(),as.vector().. 直接开始吧:(由于习惯,大部分用"=&

  • R语言中R-squared与Adjust R-squared参数的解释

    前言 最近做项目时,使用 R语言对一些数据做回归计算,分析数据时,想查看这堆数据的相关性,得知R-squared可以得到我想要的信息,但是在打印线性关系式时,看到了R-squared,Adjust R-squared 这两个参数,有点疑惑,上网也查看了一部分资料,最后,发现有两道题可以很明白解释这两个参数,如下: 题一 如果在线性回归模型中增加一个特征变量,下列可能发生的是(多选)? A. R-squared 增大,Adjust R-squared 增大 B. R-squared 增大,Adju

  • R语言中cbind、rbind和merge函数的使用与区别

    cbind: 根据列进行合并,即叠加所有列,m列的矩阵与n列的矩阵cbind()最后变成m+n列,合并前提:cbind(a, c)中矩阵a.c的行数必需相符 rbind: 根据行进行合并,就是行的叠加,m行的矩阵与n行的矩阵rbind()最后变成m+n行,合并前提:rbind(a, c)中矩阵a.c的列数必需相符 > a <- matrix(1:12, 3, 4) > print(a) [,1] [,2] [,3] [,4] [1,] 1 4 7 10 [2,] 2 5 8 11 [3,

  • R语言中Fisher判别的使用方法

    最近编写了Fisher判别的相关代码时,需要与已有软件比照结果以确定自己代码的正确性,于是找到了安装方便且免费的R.这里把R中进行Fisher判别的方法记录下来. 1. 判别分析与Fisher判别 不严谨但是通俗的说法,判别分析(Discriminant Analysis)是一种多元(多个变量)统计分析方法,它根据样本的多个已知变量的值对样本进行分类的方法.一般来说,判别分析由两个阶段构成--学习(训练)和判别.在学习阶段,给定一批已经被分类好的样本,根据它们的分类情况和样本的多个变量的值来学习

  • R语言中for循环的并行处理方式

    前言 本文用于记录笔者在将R语言中的for语句并行化处理中的一些问题. 实验 这里使用foreach和doParallel包提供的函数实现for语句的并行处理. for语句脚本 func <- function(x, y, z) { return(x^y/z) } # >>> main <<< x <- 2 y <- 3 z <- 1:100000 start <- (proc.time())[3][[1]] a <- 0 for (

  • R语言中的fivenum与quantile()函数算法详解

    fivenum()函数: 返回五个数据:最小值.下四分位数数.中位数.上四分位数.最大值 对于奇数个数字=5,fivenum()先排序,依次返回最小值.下四分位数.中位数.上四分位数.最大值 > fivenum(c(1,12,40,23,13)) [1] 1 12 13 23 40 对于奇数个数字>5,fivenum()先排序,我们可以求取最小值,最大值,中位数.在排序中,最小值与中位数中间,若为奇数,取其中位数为下四分位数,若为偶数,取最中间两个数的平均值为下四分位数:在排序中,中位数与最大

  • R语言中c()函数与paste()函数的区别说明

    c()函数:将括号中的元素连接起来,并不创建向量 paste()函数:连接括号中的元素 例如 c(1, 2:4),结果为1 2 3 4 paste(1, 2:4),结果为"1 2" "1 3" "1 4" c(2, "and"),结果为"2" "and" paste(2, "and"),结果为"2 and" 补充:R语言中paste函数的参数sep

  • R语言中cut()函数的用法说明

    R语言cut()函数使用 cut()切割将x的范围划分为时间间隔,并根据其所处的时间间隔对x中的值进行编码. 参数:breaks:两个或更多个唯一切割点或单个数字(大于或等于2)的数字向量,给出x被切割的间隔的个数. breaks采用fivenum():返回五个数据:最小值.下四分位数.中位数.上四分位数.最大值. labels为区间数,打标签 ordered_result 逻辑结果应该是一个有序的因素吗? 先用fivenum求出5个数,再用labels为每两个数之间,贴标签,采用(]的区间,

随机推荐