python常见排序算法基础教程

前言:前两天腾讯笔试受到1万点暴击,感觉浪费我两天时间去牛客网做题……这篇博客介绍几种简单/常见的排序算法,算是整理下。

时间复杂度

(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

(2)时间复杂度在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

指数时间

指的是一个问题求解所需要的计算时间m(n),依输入数据的大小而呈指数成长(即输入数据的数量依线性成长,所花的时间将会以指数成长)

for (i=1; i<=n; i++)
 x++;
for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 x++;

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

常数时间

若对于一个算法的上界与输入大小无关,则称其具有常数时间,记作时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。

对数时间

若算法的T(n) =O(logn),则称其具有对数时间

常见的具有对数时间的算法有二叉树的相关操作和二分搜索。

对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。
递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。

线性时间

如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。

一、冒泡算法

基本思想:

在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

冒泡排序的示例:

算法实现:

def bubble(array):
 for i in range(len(array)-1):
 for j in range(len(array)-1-i):
 if array[j] > array[j+1]: # 如果前一个大于后一个,则交换
 temp = array[j]
 array[j] = array[j+1]
 array[j+1] = temp

if __name__ == "__main__":
 array = [265, 494, 302, 160, 370, 219, 247, 287,
 354, 405, 469, 82, 345, 319, 83, 258, 497, 423, 291, 304]
 print("------->排序前<-------")
 print(array)
 bubble(array)
 print("------->排序后<-------")
 print(array)

输出:

------->排序前<-------
[265, 494, 302, 160, 370, 219, 247, 287, 354, 405, 469, 82, 345, 319, 83, 258, 497, 423, 291, 304]
------->排序后<-------
[82, 83, 160, 219, 247, 258, 265, 287, 291, 302, 304, 319, 345, 354, 370, 405, 423, 469, 494, 497]

讲解:

以随机产生的五个数为例: li=[354,405,469,82,345]
冒泡排序是怎么实现的?
首先先来个大循环,每次循环找出最大的数,放在列表的最后面。在上面的例子中,第一次找出最大数469,将469放在最后一个,此时我们知道
列表最后一个肯定是最大的,故还需要再比较前面4个数,找出4个数中最大的数405,放在列表倒数第二个......

5个数进行排序,需要多少次的大循环?? 当然是4次啦!同理,若有n个数,需n-1次大循环。

现在你会问我: 第一次找出最大数469,将469放在最后一个??怎么实现的??
嗯,(在大循环里)用一个小循环进行两数比较,首先354与405比较,若前者较大,需要交换数;反之不用交换。
当469与82比较时,需交换,故列表倒数第二个为469;469与345比较,需交换,此时最大数469位于列表最后一个啦!

难点来了,小循环需要多少次??

进行两数比较,从列表头比较至列表尾,此时需len(array)-1次!! 但是,嗯,举个例子吧: 当大循环i为3时,说明此时列表的最后3个数已经排好序了,不必进行两数比较,故小循环需len(array)-1-3. 即len(array)-1-i

冒泡排序复杂度:

时间复杂度: 最好情况O(n), 最坏情况O(n^2), 平均情况O(n^2)

空间复杂度: O(1)

稳定性: 稳定

简单选择排序的示例:

二、选择排序

The selection sort works as follows: you look through the entire array for the smallest element, once you find it you swap it (the smallest element) with the first element of the array. Then you look for the smallest element in the remaining array (an array without the first element) and swap it with the second element. Then you look for the smallest element in the remaining array (an array without first and second elements) and swap it with the third element, and so on. Here is an example

基本思想:

在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。

简单选择排序的示例:

算法实现:

def select_sort(array):
 for i in range(len(array)-1): # 找出最小的数放与array[i]交换
 for j in range(i+1, len(array)):
 if array[i] > array[j]:
 temp = array[i]
 array[i] = array[j]
 array[j] = temp

if __name__ == "__main__":
 array = [265, 494, 302, 160, 370, 219, 247, 287,
 354, 405, 469, 82, 345, 319, 83, 258, 497, 423, 291, 304]
 print(array)
 select_sort(array)
 print(array)

选择排序复杂度:

时间复杂度: 最好情况O(n^2), 最坏情况O(n^2), 平均情况O(n^2)

空间复杂度: O(1)

稳定性: 不稳定

举个例子:序列5 8 5 2 9, 我们知道第一趟选择第1个元素5会与2进行交换,那么原序列中两个5的相对先后顺序也就被破坏了。

排序效果:

三、直接插入排序

插入排序(Insertion Sort)的基本思想是:将列表分为2部分,左边为排序好的部分,右边为未排序的部分,循环整个列表,每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止。

插入排序非常类似于整扑克牌。

在开始摸牌时,左手是空的,牌面朝下放在桌上。接着,一次从桌上摸起一张牌,并将它插入到左手一把牌中的正确位置上。为了找到这张牌的正确位置,要将它与手中已有的牌从右到左地进行比较。无论什么时候,左手中的牌都是排好序的。

也许你没有意识到,但其实你的思考过程是这样的:现在抓到一张7,把它和手里的牌从右到左依次比较,7比10小,应该再往左插,7比5大,好,就插这里。为什么比较了10和5就可以确定7的位置?为什么不用再比较左边的4和2呢?因为这里有一个重要的前提:手里的牌已经是排好序的。现在我插了7之后,手里的牌仍然是排好序的,下次再抓到的牌还可以用这个方法插入。编程对一个数组进行插入排序也是同样道理,但和插入扑克牌有一点不同,不可能在两个相邻的存储单元之间再插入一个单元,因此要将插入点之后的数据依次往后移动一个单元。

设监视哨是我大一在书上有看过,大家忽视上图的监视哨。

算法实现:

import time

def insertion_sort(array):
 for i in range(1, len(array)): # 对第i个元素进行插入,i前面是已经排序好的元素
 position = i # 要插入数的下标
 current_val = array[position] # 把当前值存下来
 # 如果前一个数大于要插入数,则将前一个数往后移,比如5,8,12,7;要将7插入,先把7保存下来,比较12与7,将12往后移
 while position > 0 and current_val < array[position-1]:
 array[position] = array[position-1]
 position -= 1
 else: # 当position为0或前一个数比待插入还小时
 array[position] = current_val

if __name__ == "__main__":
 array = [92, 77, 67, 8, 6, 84, 55, 85, 43, 67]
 print(array)
 time_start = time.time()
 insertion_sort(array)
 time_end = time.time()
 print("time: %s" % (time_end-time_start))
 print(array)

输出:

[92, 77, 67, 8, 6, 84, 55, 85, 43, 67]
time: 0.0
[6, 8, 43, 55, 67, 67, 77, 84, 85, 92]

如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

直接插入排序复杂度:

时间复杂度: 最好情况O(n), 最坏情况O(n^2), 平均情况O(n^2)

空间复杂度: O(1)

稳定性: 稳定

个人感觉直接插入排序算法难度是选择/冒泡算法是两倍……

四、快速排序

快速排序示例:

算法实现:

def quick_sort(array, left, right):
 '''
 :param array:
 :param left: 列表的第一个索引
 :param right: 列表最后一个元素的索引
 :return:
 '''
 if left >= right:
 return

 low = left
 high = right
 key = array[low] # 第一个值,即基准元素

 while low < high: # 只要左右未遇见
 while low < high and array[high] > key: # 找到列表右边比key大的值 为止
 high -= 1
 # 此时直接 把key跟 比它大的array[high]进行交换
 array[low] = array[high]
 array[high] = key

 while low < high and array[low] <= key: # 找到key左边比key大的值,这里为何是<=而不是<呢?你要思考。。。
 low += 1
 # 找到了左边比k大的值 ,把array[high](此时应该刚存成了key) 跟这个比key大的array[low]进行调换
 array[high] = array[low]
 array[low] = key

 quick_sort(array, left, low-1) # 最后用同样的方式对分出来的左边的小组进行同上的做法
 quick_sort(array,low+1, right) # 用同样的方式对分出来的右边的小组进行同上的做法

if __name__ == '__main__':
 array = [8,4,1, 14, 6, 2, 3, 9,5, 13, 7,1, 8,10, 12]
 print("-------排序前-------")
 print(array)
 quick_sort(array, 0, len(array)-1)
 print("-------排序后-------")
 print(array)

输出:

-------排序前-------
[8, 4, 1, 14, 6, 2, 3, 9, 5, 13, 7, 1, 8, 10, 12]
-------排序后-------
[1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 12, 13, 14]

22行那里如果不加=号,当排序64,77,64是会死循环,此时key=64, 最后的64与开始的64交换,开始的64与本最后的64交换…… 无穷无尽

直接插入排序复杂度:

时间复杂度: 最好情况O(nlogn), 最坏情况O(n^2), 平均情况O(nlogn)

下面空间复杂度是看别人博客的,我也不大懂了……改天再研究下。

最优的情况下空间复杂度为:O(logn);每一次都平分数组的情况

最差的情况下空间复杂度为:O( n );退化为冒泡排序的情况

稳定性:不稳定

快速排序效果:

参考:

Python常用算法学习基础教程

视觉直观感受若干常用排序算法

c++中八大排序算法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python里对list中的整数求平均并排序

    问题 定义一个int型的一维数组,包含40个元素,用来存储每个学员的成绩,循环产生40个0~100之间的随机整数, (1)将它们存储到一维数组中,然后统计成绩低于平均分的学员的人数,并输出出来. (2)将这40个成绩按照从高到低的顺序输出出来. 解决(python) #! /usr/bin python #coding:utf-8 from __future__ import division #实现精确的除法,例如4/3=1.333333 import random def make_scor

  • python字符串排序方法

    本文以实例形式简述了Python实现字符串排序的方法,是Python程序设计中一个非常实用的技巧.分享给大家供大家参考之用.具体方法如下: 一般情况下,python中对一个字符串排序相当麻烦: 一.python中的字符串类型是不允许直接改变元素的.必须先把要排序的字符串放在容器里,如list. 二.python中的list容器的sort()函数没返回值. 所以在python中对字符串排序往往需要好几行代码. 具体实现方法如下: >>> s = "string" >

  • python编程实现归并排序

    因为上个星期leetcode的一道题(Median of Two Sorted Arrays)所以想仔细了解一下归并排序的实现. 还是先阐述一下排序思路: 首先归并排序使用了二分法,归根到底的思想还是分而治之.拿到一个长数组,将其不停的分为左边和右边两份,然后以此递归分下去.然后再将她们按照两个有序数组的样子合并起来.这样说起来可能很难理解,于是给出一张我画的图. 这里显示了归并排序的第一步,将数组按照middle进行递归拆分,最后分到最细之后再将其使用对两个有序数组进行排序的方法对其进行排序.

  • python sort、sorted高级排序技巧

    Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列. 1)排序基础 简单的升序排序是非常容易的.只需要调用sorted()方法.它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序. 复制代码 代码如下: >>> sorted([5, 2, 3, 1, 4]) [1, 2, 3, 4, 5] 你也可以使用list.sort()方法来排序,此时list本身将被修改.通常此方法不如s

  • python 实现归并排序算法

    理论不多说: 复制代码 代码如下: #!/usr/bin/python import sys def merge(array, q, p, r): left_array = array[q:p+1] right_array = array[p+1:r+1] left_array_num = len(left_array) right_array_num = len(right_array) i, j , k= [0, 0, q] while i < left_array_num and j <

  • python编程实现希尔排序

    观察一下"插入排序":其实不难发现她有个缺点: 如果当数据是"5, 4, 3, 2, 1"的时候,此时我们将"无序块"中的记录插入到"有序块"时,估计俺们要崩盘,每次插入都要移动位置,此时插入排序的效率可想而知. shell根据这个弱点进行了算法改进,融入了一种叫做"缩小增量排序法"的思想,其实也蛮简单的,不过有点注意的就是: 增量不是乱取,而是有规律可循的. 希尔排序时效分析很难,关键码的比较次数与记录移

  • Python中对列表排序实例

    很多时候,我们需要对List进行排序,Python提供了两个方法,对给定的List L进行排序: 方法1.用List的成员函数sort进行排序 方法2.用built-in函数sorted进行排序(从2.4开始) 这两种方法使用起来差不多,以第一种为例进行讲解: 从Python2.4开始,sort方法有了三个可选的参数,Python Library Reference里是这样描述的 复制代码 代码如下: cmp:cmp specifies a custom comparison function

  • Python中字典(dict)和列表(list)的排序方法实例

    一.对列表(list)进行排序 推荐的排序方式是使用内建的sort()方法,速度最快而且属于稳定排序 复制代码 代码如下: >>> a = [1,9,3,7,2,0,5]>>> a.sort()>>> print a[0, 1, 2, 3, 5, 7, 9]>>> a.sort(reverse=True)>>> print a[9, 7, 5, 3, 2, 1, 0]>>> b = ['e','a'

  • python 快速排序代码

    复制代码 代码如下: def quick_sort(ls): return [] if ls == [] else quick_sort([y for y in ls[1:] if y < ls[0]]) + [ls[0]] + quick_sort([y for y in ls[1:] if y >= ls[0]]) if __name__ == '__main__': l1 = [3,56,8,1,34,56,89,234,56,231,45,90,33,66,88,11,22] l2 =

  • Python编程中归并排序算法的实现步骤详解

    基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止.然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排序. 归并操作过程: 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 设定两个指针,最初位置分别为两个已经排序序列的起始位置 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 重复步骤3直到某一指针达到序列尾

随机推荐