使用Python解决常见格式图像读取nii,dicom,mhd

目录
  • 1. raw,mhd 格式医学图像数据转换
  • 2. dicom格式医学图像数据转换
  • 3. nii格式医学图像转换

1. raw,mhd 格式医学图像数据转换

raw+mhd格式是常见的一种医学图像格式,每一个病人的数据包含一个mhd文件和一个同名的raw文件,mhd即meta header data,数据头部信息,而raw存储了像素信息。方法需要使用的SimpleITK库,我们需要在自己的Python环境中安装对应的库

pip install SimpleITK

mhd+raw的数据往往是三维体数据,我们可以从mhd文件中读取数据的具体信息如图像大小、切片大小、像素大小等信息。使用sitk.ReadImage() 即可读取图像,使用sitk.GetArrayFromImage() 可获取图像矩阵。

具体代码如下:

import os
import SimpleITK as sitk
import matplotlib.pyplot as plt
from natsort import natsorted
from tqdm import tqdm
import cv2
import numpy as np

mhd_path = './xxx.mhd'  # mhd文件需和同名raw文件放在同一个文件夹
data = sitk.ReadImage(mhd_path)  # 读取mhd文件
# print(data)
spacing = data.GetSpacing()  # 获得spacing大小
img_data = sitk.GetArrayFromImage(data)  # 获得图像矩阵
print(img_data.shape)

# 图像数据转换为npy保存
np.save('img_data.npy', np.array(img_data))

# 将图像转为png格式保存
for i in range(img_data.shape[0]):
    cv2.imwrite('./{}.png'.format(i), img_data[i, :, :])

2. dicom格式医学图像数据转换

DICOM(Digital Imaging and Communications in Medicine) 即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052)。DICOM被广泛应用于放射医疗,心血管成像以及放射诊疗诊断设备(X射线,CT,核磁共振,超声等),并且在眼科和牙科等其它医学领域得到越来越深入广泛的应用。所有患者的医学图像都以 DICOM 文件格式进行存储。使用Python读取dicom图像可以使用pydicom库和SimpleITK库来完成。由于在医学图像处理领域中,对不同的图像需要使用不同的窗宽窗位导出图像,在下面代码中,我增加了对应的代码。

pip install SimpleITK
pip install pydicom

使用pydicom方法具体代码如下:

import os
import SimpleITK as sitk
import matplotlib.pyplot as plt
from natsort import natsorted
from tqdm import tqdm
import cv2
import pydicom
import numpy as np

#调整图像窗宽窗位
def window_transform(ct_array, window_width, window_center, normal=False):
    min_window = float(window_center) - 0.5*float(window_width)
    new_img = (ct_array - min_window) / float(window_width)
    new_img[new_img < 0] = 0
    new_img[new_img > 1] = 1
    if not normal:
        new_img = (new_img * 255).astype('uint8')
    return new_img

img_path = 'xx.dcm'
#此时读取的是所有dicom图像信息
image = pydicom.read_file(img_path)
#获得图像矩阵
image_data = image.pixel_array
#获得dicom中的患者信息、图像信息等
information['PatientID'] = image.PatientID
information['PatientName'] = image.PatientName
information['PatientBirthDate'] = image.PatientBirthDate
information['PatientSex'] = image.PatientSex
window_width = 1000
window_center = 30
image_data = window_transform(image_data, window_width, window_center, normal=False)
cv2.imwrite('./img.png',image_data)

使用SimpleITK方法具体代码如下:

import os
import SimpleITK as sitk
import matplotlib.pyplot as plt
from natsort import natsorted
from tqdm import tqdm
import cv2
import pydicom
import numpy as np

img_path = 'xx.dcm'
#此时读取的是所有dicom图像信息
image = sitk.ReadImage(img_path)
# 转为值为0-255的灰度图
rescalFilt = sitk.RescaleIntensityImageFilter()
rescalFilt.SetOutputMaximum(255)
rescalFilt.SetOutputMinimum(0)
image = rescalFilt.Execute(image)
image_data = sitk.GetArrayFromImage(image_data)
image_data = np.squeeze(dicom_data)
cv2.imwrite('./img.png',image_data)

3. nii格式医学图像转换

医学影像早期使用的是DICOM标准,基本上各家厂商都会使用符合DICOM标准的产品,但是这个标准对于数据分析并不方便。在神经影像兴起时就诞生了各种各样的数据存储标准,比如analyze。后为了便于学术交流,NIH拉着其他一些组织的专家成立了工作组,制定了新的神经影像的数据存储标准,称为NIFTI。 读取nii后缀的NIFTI格式图像需要安装nibabel库

pip install nibabel

使用nib.load() 函数即可读取图像数据data, 其中dataobj就是图像矩阵

import os
import numpy as np
import nibabel as nib
import matplotlib.pyplot as plt
from glob import glob

img_path = './xxx.nii'
image = nib.load(img_path)
image_data = image.dataobj
for i in range(0, dataobj.shape[2]):
    cv2.imwrite('./{}.png'.format(i), img_data[i, :, :])

到此这篇关于使用Python解决常见格式图像读取nii,dicom,mhd的文章就介绍到这了,更多相关Python图像读取内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python读取dicom图像示例(SimpleITK和dicom包实现)

    1. 用SimpleITK读取dicom序列: import SimpleITK as sitk import numpy as np img_path='F:\\dataset\\pancreas\\Output\\thick\\original\\1' mask_path='F:\\dataset\\pancreas\\Output\\thick\\groundtruth\\1' reader = sitk.ImageSeriesReader() img_names = reader.Get

  • 利用Python裁切tiff图像且读取tiff,shp文件的实例

    我就废话不多说了,还是直接看代码吧! from osgeo import gdal, gdalnumeric, ogr from PIL import Image, ImageDraw from osgeo import gdal_array import os import operator from functools import reduce gdal.UseExceptions() def readTif(fileName): dataset = gdal.Open(fileName)

  • python 读取.nii格式图像实例

    我就废话不多说了,大家还是直接看代码吧~ # encoding=utf8 ''' 查看和显示nii文件 ''' import matplotlib matplotlib.use('TkAgg') from matplotlib import pylab as plt import nibabel as nib from nibabel import nifti1 from nibabel.viewers import OrthoSlicer3D example_filename = '../AD

  • python读取图片的几种方式及图像宽和高的存储顺序

    1.opencv 2.imageio 3.matplotlib 4.scipy # coding:utf-8 import cv2 import imageio from scipy import misc from PIL import Image from matplotlib import pyplot as plt image_path = "./images/000011.jpg" # 使用pillow读取图片,获取图片的宽和高 img_pillow = Image.open

  • Python读取图像并显示灰度图的实现

    python读取图像 原图: import cv2 # 利用opencv读取图像 import numpy as np # 利用matplotlib显示图像 import matplotlib.pyplot as plt img = cv2.imread("./lena.png") #读取图像 # 显示图像 plt.imshow(img) plt.axis('off') plt.show() 效果: 问:为什么画出的图像和原图有色差呢? 答:opencv的颜色通道顺序为[B,G,R],

  • python opencv 实现读取、显示、写入图像的方法

    opencv是一个强大的图像处理和计算机视觉库,实现了很多实用算法,值得学习和深究下. opencv包安装 · 这里直接安装opencv-python包(非官方): pip install opencv-python 官方文档:https://opencv-python-tutroals.readthedocs.io/en/latest/ 1.读取图像 import cv2 image=cv2.imread("dog2.jpg",1) 说明: 第二个参数是一个标志,它指定了读取图像的方

  • python对DICOM图像的读取方法详解

    DICOM介绍 DICOM3.0图像,由医学影像设备产生标准医学影像图像,DICOM被广泛应用于放射医疗,心血管成像以及放射诊疗诊断设备(X射线,CT,核磁共振,超声等),并且在眼科和牙科等其它医学领域得到越来越深入广泛的应用.在数以万计的在用医学成像设备中,DICOM是部署最为广泛的医疗信息标准之一.当前大约有百亿级符合DICOM标准的医学图像用于临床使用. 看似神秘的图像文件,究竟是如何读取呢?网上随便 一搜,都有很多方法,但缺乏比较系统的使用方法,下文综合百度资料,结合python2.7,

  • 使用Python解决常见格式图像读取nii,dicom,mhd

    目录 1. raw,mhd 格式医学图像数据转换 2. dicom格式医学图像数据转换 3. nii格式医学图像转换 1. raw,mhd 格式医学图像数据转换 raw+mhd格式是常见的一种医学图像格式,每一个病人的数据包含一个mhd文件和一个同名的raw文件,mhd即meta header data,数据头部信息,而raw存储了像素信息.方法需要使用的SimpleITK库,我们需要在自己的Python环境中安装对应的库 pip install SimpleITK mhd+raw的数据往往是三

  • 利用python实现.dcm格式图像转为.jpg格式

    如下所示: import pydicom import matplotlib.pyplot as plt import scipy.misc import pandas as pd import numpy as np import os def Dcm2jpg(file_path): #获取所有图片名称 c = [] names = os.listdir(file_path) #路径 #将文件夹中的文件名称与后边的 .dcm分开 for name in names: index = name.

  • 使用Nibabel库对nii格式图像的读写操作

    因为后期主要的研究方向是医学图像处理,而现有手头的大部分数据都是nii格式或者是hdr,img格式的数据,所以首先第一步我们需要解决图像的读写问题. 其实使用OpenCV也可以方便的进行图像读取,但是这里暂时只学习Nibabel这个库,后面有时间的话再研究OpenCV在python中的使用. Nibabel的安装 可以通过pip进行安装 pip install nibabel 简单的图像读取和存储操作 import os import nibabel as nib # 读取图像 path='C:

  • python使用nibabel和sitk读取保存nii.gz文件实例

    nii.gz格式是医学图像常用的压缩格式,python中可用nibabel和sitk来读取保存. 使用nibabel 由于使用nibabel图像会旋转90度,所以读取保存的时候还得保存映射信息,3维图像格式为(z, y, x) 读取nii.gz文件 img = nib.load('xxxxx.nii.gz') img_affine = img.affine img = img.get_data() 保存nii.gz文件 nib.Nifti1Image(img,img_affine).to_fil

  • Python使用matplotlib实现的图像读取、切割裁剪功能示例

    本文实例讲述了Python使用matplotlib实现的图像读取.切割裁剪功能.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- import sys reload(sys) sys.setdefaultencoding('utf-8') import matplotlib.pylab as plt # 加载图像 im = plt.imread("C:/4.png") print(im.shape) # (y轴像素点数, x轴像素点数,图像通道数) def

  • Python+OpenCV实现将图像转换为二进制格式

    在学习tensorflow的过程中,有一个问题,tensorflow在训练的过程中读取的是二进制图像数据库文件,而不是图像文件,因此 在进行训练.测试之前需要将图像文件转换为二进制格式. 下面是我在ubuntu中使用python+OpenCV读取图像并转换为二进制格式文件的代码. #coding=utf-8 ''' Created on 2016年3月24日 使用Opencv读取图像将其保存为二进制格式文件,再读取该二进制文件,转换为图像进行显示 @author: hanchao ''' imp

  • python解决OpenCV在读取显示图片的时候闪退的问题

    利用OpenCV练习读取图片的时候,图片总是一闪而过,不利于观察,这个时候需要利用到waitKey函数. waitKey函数:用来等待按键,当用户按下按键后,该语句会被执行,并获取返回值. 语法格式为retval=cv2.waitKey([delay]) retval:表示返回值: delay:表示等待按键触发的时间,单位是ms: 下面是简单的例子展示: import cv2 lena=cv2.imread("D:\pmjcv\lena.bmp") cv2.namedWindow(&q

  • 解决python将xml格式文件转换成txt文件的问题(xml.etree方法)

    概述 先来介绍一下xml格式的文件,从数据分析的角度去看xml格式的数据集,具有以下的优点开放性(能在任何平台上读取和处理数据,允许通过一些网络协议交换xml数据).简单性(纯文本,能在不同的系统之间交换数据).结构和内容分离(不同于HTML,数据的显示和数据本身是分开的).可扩展性(派生出其他标记语言) 问题描述 那么我们在进行数据分析的时候,如何运用xml里面的数据呢? 我们就需要将这类文件转化成其他类型的文件. (其实我认为说成提取xml的数据组成新的类型文件比较好一点) 就我个人的观点,

  • 解决python中os.listdir()函数读取文件夹下文件的乱序和排序问题

    1. os.listdir()概述 os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表. 例如: dir ='F:/Home_01/img'#当前目录 filenames=os.listdir(dir)#filenames存储dir下的所有文件名. 注意:os.listdir()返回的文件名不一定是顺序的,也就是说结果是不固定的,如下图,则filenames[0]有可能为'22.jpg',而不是我们所希望的'11.jpg'. 解决办法: filenames=os.l

随机推荐