python实现启动一个外部程序,并且不阻塞当前进程

python可以使用os模块中的system函数来启动外部程序。

Windows平台下使用start命令就可以不阻塞当前进程的执行程序,测试代码如下:

import os

os.system('start calc')

补充知识:Python:启动大量子进程

我就废话不多说了,大家还是直接看代码吧~

#!/usr/bin/env python
# coding:UTF-8 

"""
@version: python3.x
@author:曹新健
@contact: 617349013@qq.com
@software: PyCharm
@file: 5.启动大量子进程.py
@time: 2018/9/18 22:28
"""
from multiprocessing import Process,Pool
import time,os,random

def run(num):
 print("子进程%d启动---%s" % (num,os.getpid()))
 start = time.time()
 time.sleep(random.choice([1,2,3]))
 end = time.time()
 #print(end)
 print("子进程%d结束---%s---耗时%.2f" % (num, os.getpid(),end-start))

if __name__ == "__main__":
 print("父进程启动")
 #创建进程池,Pool默认为CPU核心数
 pp = Pool()
 for i in range(8):
  #创建进程,放入进程池统一管理
  result = pp.apply_async(run,args=(i,))

 #进程池在调动join之前必须先调动close,调用close之后就不能再继续添加新的进程了
 pp.close()
 pp.join()

 print("父进程结束")
 

以上这篇python实现启动一个外部程序,并且不阻塞当前进程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python实现多进程并发控制Semaphore与互斥锁LOCK

    一.了解锁 应用场景举例描述: Lock 互斥锁:举例说明–有三个同事同时需要上厕所,但是只有一间厕所,将同事比作进程,多个进程并打抢占一个厕所,我们要保证顺序优先, 一个个来,那么就必须串行,先到先得,有人使用了,就锁住,结束后剩余的人继续争抢 1.利用Lock来处理 模拟三个同事抢占厕所 from multiprocessing import Process from multiprocessing import Lock import time import random def task

  • Python 多进程原理及实现

    1 进程的基本概念 什么是进程? ​ 进程就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成.我们编写的程序用来描述进程要完成哪些功能以及如何完成:数据集则是程序在执行过程中所需要使用的资源:进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志. 进程的生命周期:创建(New).就绪(Runnable).运行(Running).阻塞(Block).销毁(Destroy) 进程的状态(分类)

  • 像线程一样管理进程的Python multiprocessing库

    一.创建一个进程 要创建一个进程,最简单的方式是用一个目标函数实例化一个Process对象,然后与threading一样调用start()函数让它工作.示例如下: import multiprocessing def worker(): for i in range(3): print(i) if __name__=="__main__": p = multiprocessing.Process(target=worker) p.start() 运行之后,效果如下: 需要注意的是,mu

  • Python基础之进程详解

    一.前言 进程,一个新鲜的字眼,可能有些人并不了解,它是系统某个运行程序的载体,这个程序可以有单个或者多个进程,一般来说,进程是通过系统CPU 内核数来分配并设置的,我们可以来看下系统中的进程: 可以看到,360浏览器是真的皮,这么多进程啊,当然可以这样来十分清楚的看进程线程使用情况: 通过任务管理器中的资源监视器,是不是很厉害了,哈哈哈.讲完了这些,再说说用法. 二.基本用法 进程能干什么,这是我们要深思熟虑的事情.我们都知道一个程序运行会创建进程,所以程序在创建这些进程的时候,为了让它们更能

  • 如何用 Python 子进程关闭 Excel 自动化中的弹窗

    利用Python进行Excel自动化操作的过程中,尤其是涉及VBA时,可能遇到消息框/弹窗(MsgBox).此时需要人为响应,否则代码卡死直至超时 [^1] [^2].根本的解决方法是VBA代码中不要出现类似弹窗,但有时我们无权修改被操作的Excel文件,例如这是我们进行自动化测试的对象.所以本文记录从代码角度解决此类问题的方法. 假想场景 使用xlwings(或者其他自动化库)打开Excel文件test.xlsm,读取Sheet1!A1单元格内容.很简单的一个操作: import xlwing

  • python 实现多进程日志轮转ConcurrentLogHandler

    记录日志是我们程序中必不可少的一个功能,但是日志文件如果没有合理的管理,时间长了几百兆的日志文件就很难分析了(都不想打开看),但是又不可能经常手动去管理它 日志轮转:根据时间或者文件大小控制日志的文件个数,不用我们手动管理 python中logging模块内置的有几个支持日志轮转的handler 常用的有TimedRotatingFileHandler根据时间轮转 RotatingFileHandler根据文件大小轮转 但是内置的这些handler是多线程安全的,而不支持多进程(可以修改源码加锁

  • 解决Python 进程池Pool中一些坑

    1 from multiprocessing import Pool,Queue. 其中Queue在Pool中不起作用,具体原因未明. 解决方案: 如果要用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue, 与multiprocessing中的Queue不同 q=Manager().Queue()#Manager中的Queue才能配合Pool po = Pool() # 无穷多进程 2 使用进程池,在进程中调用io读写操作. 例如: p=Pool()

  • python3中celery异步框架简单使用+守护进程方式启动

    安装celery sudo pip install celery 实例化 celery from celery import Celery app = Celery("testapp") # 导入配置 app.config_from_object('celery_tasks.config') # 自动添加任务 app.autodiscover_tasks(["celery_tasks.test","celery_tasks.test2"]) 简单

  • python multiprocessing 多进程并行计算的操作

    python的multiprocessing包是标准库提供的多进程并行计算包,提供了和threading(多线程)相似的API函数,但是相比于threading,将任务分配到不同的CPU,避免了GIL(Global Interpreter Lock)的限制. 下面我们对multiprocessing中的Pool和Process类做介绍. Pool 采用Pool进程池对任务并行处理更加方便,我们可以指定并行的CPU个数,然后 Pool 会自动把任务放到进程池中运行. Pool 包含了多个并行函数.

  • Selenium执行完毕未关闭chromedriver/geckodriver进程的解决办法(java版+python版)

    selenium操作chrome浏览器需要有ChromeDriver驱动来协助.webdriver中关浏览器关闭有两个方法,一个叫quit,一个叫close. /** * Close the current window, quitting the browser if it's the last window currently open. */ void close(); /** * Quits this driver, closing every associated window. */

  • Python Process创建进程的2种方法详解

    前面介绍了使用 os.fork() 函数实现多进程编程,该方法最明显的缺陷就是不适用于 Windows 系统.本节将介绍一种支持 Python 在 Windows 平台上创建新进程的方法. Python multiprocessing 模块提供了 Process 类,该类可用来在 Windows 平台上创建新进程.和使用 Thread 类创建多线程方法类似,使用 Process 类创建多进程也有以下 2 种方式: 直接创建 Process 类的实例对象,由此就可以创建一个新的进程: 通过继承 P

  • Python中使用subprocess库创建附加进程

    前言 subprocess库提供了一个API创建子进程并与之通信.这对于运行生产或消费文本的程序尤其有好处,因为这个API支持通过新进行的标准输入和输出通道来回传数据. 本篇,将详细介绍Python创建附加进行的库:subprocess. run(运行外部命令) subprocess库本身可以替换os.system(),os.spawnv()等函数.现在我们来通过subprocess库运行一个外部命令,但不采用os.system().示例如下: import subprocess complet

  • python多进程执行方法apply_async使用说明

    apply_async简介 python在同一个线程中多次执行同一方法时,该方法执行耗时较长且每次执行过程及结果互不影响,如果只在主进程中执行,效率会很低,因此使用multiprocessing.Pool(processes=n)及其apply_async()方法提高程序执行的并行度从而提高程序的执行效率,其中processes=n为程序并行执行的进程数. apply_async使用简明代码 import multiprocessing #method为多次调用的方法 def method(pa

  • python多线程和多进程关系详解

    关于多线程的大概讲解: 在Python的标准库中给出了2个模块:_thread和threading,_thread是低级模块不支持守护线程,当主线程退出了时,全部子线程都会被强制退出了.而threading是高级模块,用作对_thread进行了封装支持守护线程.在大部分状况下人们只需要采用threading这个高级模块即可. 关于多进程的大概讲解: 多进程是multiprocessing模块给出远程与本地的并发,在一个multiprocessing库的采用场景下,全部的子进程全是由一个父进程运行

  • Python之多进程与多线程的使用

    进程与线程 想象在学校的一个机房,有固定数量的电脑,老师安排了一个爬虫任务让大家一起完成,每个学生使用一台电脑爬取部分数据,将数据放到一个公共数据库.共同资源就像公共数据库,进程就像每一个学生,每多一个学生,就多一个进程来完成这个任务,机房里的电脑数量就像CPU,所以进程数量是CPU决定的,线程就像学生用一台电脑开多个爬虫,爬虫数量由每台电脑的运行内存决定. 一个CPU可以有多个进程,一个进程有一个或多个线程. 多进程 1.导包 from multiprocessing import Proce

  • python 多进程和多线程使用详解

    进程和线程 进程是系统进行资源分配的最小单位,线程是系统进行调度执行的最小单位: 一个应用程序至少包含一个进程,一个进程至少包含一个线程: 每个进程在执行过程中拥有独立的内存空间,而一个进程中的线程之间是共享该进程的内存空间的: 计算机的核心是CPU,它承担了所有的计算任务.它就像一座工厂,时刻在运行. 假定工厂的电力有限,一次只能供给一个车间使用.也就是说,一个车间开工的时候,其他车间都必须停工.背后的含义就是,单个CPU一次只能运行一个任务.编者注: 多核的CPU就像有了多个发电厂,使多工厂

  • Python多进程与多线程的使用场景详解

    前言 Python多进程适用的场景:计算密集型(CPU密集型)任务 Python多线程适用的场景:IO密集型任务 计算密集型任务一般指需要做大量的逻辑运算,比如上亿次的加减乘除,使用多核CPU可以并发提高计算性能. IO密集型任务一般指输入输出型,比如文件的读取,或者网络的请求,这类场景一般会遇到IO阻塞,使用多核CPU来执行并不会有太高的性能提升. 下面使用一台64核的虚拟机来执行任务,通过示例代码来区别它们, 示例1:执行计算密集型任务,进行1亿次运算 使用多进程 from multipro

  • 如何用tempfile库创建python进程中的临时文件

    技术背景 临时文件在python项目中时常会被使用到,其作用在于随机化的创建不重名的文件,路径一般都是放在Linux系统下的/tmp目录.如果项目中并不需要持久化的存储一个文件,就可以采用临时文件的形式进行存储和读取,在使用之后可以自行决定是删除还是保留. tempfile库的使用 tempfile一般是python内置的一个函数库,不需要单独安装,这里我们直接介绍一下其常规使用方法: # tempfile_test.py import tempfile file = tempfile.Name

随机推荐