Java并发编程之线程创建介绍

目录
  • 1.线程与进程
  • 2.线程的创建与运行

1.线程与进程

进程是代码在数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,线程则是一个实体,一个进程中至少有一个线程,是CPU调度和分配的基本单位,进程中的多个线程共享进程的资源。

进程的三个特征:

  • 动态性 : 进程是运行中的程序,要动态的占用内存,CPU和网络等资源。
  • 独立性 : 进程与进程之间是相互独立的,彼此有自己的独立内存区域。
  • 并发性 : 假如CPU是单核,同一个时刻其实内存中只有一个进程在被执行。CPU会分时轮询切换依次为每个进程服务,因为切换的速度非常快,给我们的感觉这些进程在同时执行,这就是并发性。

2.线程的创建与运行

我们在进程中创建线程的方式有三种:

  • 方式一:继承Thread类的方式
  • 1.定义一个线程类继承Thread类。
  • 2.重写run()方法
  • 3.创建一个新的线程对象。
  • 4.调用线程对象的start()方法启动线程。
public class ThreadDemo {
    // 启动后的ThreadDemo当成一个进程。
    // main方法是由主线程执行的,理解成main方法就是一个主线程
    public static void main(String[] args) {
        // 3.创建一个线程对象
        Thread t = new MyThread();
        // 4.调用线程对象的start()方法启动线程,最终还是执行run()方法!
        t.start();

        for(int i = 0 ; i < 100 ; i++ ){
            System.out.println("main线程输出:"+i);
        }
    }
}

// 1.定义一个线程类继承Thread类。
class MyThread extends Thread{
    // 2.重写run()方法
    @Override
    public void run() {
        // 线程的执行方法。
        for(int i = 0 ; i < 100 ; i++ ){
            System.out.println("子线程输出:"+i);
        }
    }
}

优点:编码简单,在run()方法内获取当前线程直接使用this就可以了,无需使用Thread.currentThread()方法。 缺点:线程类已经继承了Thread类无法继承其他类了,功能不能通过继承拓(单继承的局限性)。另外任务与代码没有分离,当多个线程执行一样的任务时需要多份任务代码。

小结:

  • 线程类是继承了Thread的类。
  • 启动线程必须调用start()方法。
  • 多线程是并发抢占CPU执行,所以在执行的过程中会出现并发随机性

方式二:实现Runnable接口的方式。

  • 1.创建一个线程任务类实现Runnable接口。
  • 2.重写run()方法
  • 3.创建一个线程任务对象。
  • 4.把线程任务对象包装成线程对象
  • 5.调用线程对象的start()方法启动线程。
public class ThreadDemo {
    public static void main(String[] args) {
        // 3.创建一个线程任务对象(注意:线程任务对象不是线程对象,只是执行线程的任务的)
        Runnable target = new MyRunnable();
        // 4.把线程任务对象包装成线程对象.且可以指定线程名称
        // Thread t = new Thread(target);
        Thread t = new Thread(target,"1号线程");
        // 5.调用线程对象的start()方法启动线程
        t.start();

        Thread t2 = new Thread(target);
        // 调用线程对象的start()方法启动线程
        t2.start();

        for(int i = 0 ; i < 10 ; i++ ){
            System.out.println(Thread.currentThread().getName()+"==>"+i);
        }
    }
}

// 1.创建一个线程任务类实现Runnable接口。
class MyRunnable implements Runnable{
    // 2.重写run()方法
    @Override
    public void run() {
        for(int i = 0 ; i < 10 ; i++ ){
            System.out.println(Thread.currentThread().getName()+"==>"+i);
        }
    }
}

优点:

线程任务类只是实现了Runnable接口,可以继续继承其他类,而且可以继续实现其他接口(避免了单继承的局限性)。 同一个线程任务对象可以被包装成多个线程对象,适合多个多个线程去共享同一个资源。实现解耦操作,线程任务代码可以被多个线程共享,线程任务代码和线程独立。

方法三:实现Callable接口

  • 1.定义一个线程任务类实现Callable接口 , 申明线程执行的结果类型。
  • 2.重写线程任务类的call方法,这个方法可以直接返回执行的结果。
  • 3.创建一个Callable的线程任务对象。
  • 4.把Callable的线程任务对象包装成一个FutureTask对象。
  • 5.把FutureTask对象包装成线程对象。
  • 6.调用线程的start()方法启动线程 。
public class ThreadDemo {
    public static void main(String[] args) {
        // 3.创建一个Callable的线程任务对象
        Callable call = new MyCallable();
        // 4.把Callable任务对象包装成一个未来任务对象
        //      -- public FutureTask(Callable<V> callable)
        // 未来任务对象是啥,有啥用?
        //      -- 未来任务对象其实就是一个Runnable对象:这样就可以被包装成线程对象!
        //      -- 未来任务对象可以在线程执行完毕之后去得到线程执行的结果。
        FutureTask<String> task = new FutureTask<>(call);
        // 5.把未来任务对象包装成线程对象
        Thread t = new Thread(task);
        // 6.启动线程对象
        t.start();

        for(int i = 1 ; i <= 10 ; i++ ){
            System.out.println(Thread.currentThread().getName()+" => " + i);
        }

        // 在最后去获取线程执行的结果,如果线程没有结果,让出CPU等线程执行完再来取结果
        try {
            String rs = task.get(); // 获取call方法返回的结果(正常/异常结果)
            System.out.println(rs);
        }  catch (Exception e) {
            e.printStackTrace();
        }

    }
}

// 1.创建一个线程任务类实现Callable接口,申明线程返回的结果类型
class MyCallable implements Callable<String>{
    // 2.重写线程任务类的call方法!
    @Override
    public String call() throws Exception {
        // 需求:计算1-10的和返回
        int sum = 0 ;
        for(int i = 1 ; i <= 10 ; i++ ){
            System.out.println(Thread.currentThread().getName()+" => " + i);
            sum+=i;
        }
        return Thread.currentThread().getName()+"执行的结果是:"+sum;
    }
}

优点: 线程任务类只是实现了Callable接口,可以继续继承其他类,而且可以继续实现其他接口(避免了单继承的局限性)。 同一个线程任务对象可以被包装成多个线程对象,适合多个多个线程去共享同一个资源。实现解耦操作,线程任务代码可以被多个线程共享,线程任务代码和线程独立。最关键的是能直接得到线程执行的结果。

到此这篇关于Java并发编程之线程创建的文章就介绍到这了,更多相关Java 线程创建内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java并发编程示例(一):线程的创建和执行

    开门见山 在IT圈里,每当我们谈论并发时,必定会说起在一台计算机上同时运行的一系列线程.如果这台电脑上有多个处理器或者是一个多核处理器,那么这时是实实在在的"同时运行":但是,如果计算机只有一个单核处理器,那么这时的"同时运行"只是表象而已. 所有的现代操作系统全部支持任务的并发执行.你可以边听音乐,边上网看新闻,还不耽误首发电子邮件.我们可以说,这种并发是 进程级并发 .在进程内部,我也可以看到有许许多多的并发任务.我们把运行在一个进程里面的并发任务称 线程. 和

  • Java并发编程之创建线程

    先讲述一下Java中的应用程序和进程相关的概念知识,然后再阐述如何创建线程以及如何创建进程.下面是本文的目录大纲: 一.Java中关于应用程序和进程相关的概念 二.Java中如何创建线程 三.Java中如何创建进程 一.Java中关于应用程序和进程相关的概念 在Java中,一个应用程序对应着一个JVM实例(也有地方称为JVM进程),一般来说名字默认为java.exe或者javaw.exe(windows下可以通过任务管理器查看).Java采用的是单线程编程模型,即在我们自己的程序中如果没有主动创

  • Java并发编程中使用Executors类创建和管理线程的用法

    1. 类 Executors Executors类可以看做一个"工具类".援引JDK1.6 API中的介绍:   此包中所定义的 Executor.ExecutorService.ScheduledExecutorService.ThreadFactory 和 Callable 类的工厂和实用方法.此类支持以下各种方法: (1)创建并返回设置有常用配置字符串的 ExecutorService 的方法. (2)创建并返回设置有常用配置字符串的 ScheduledExecutorServi

  • Java并发编程创建并运行线程的方法对比

    目录 一.创建并运行线程的五种方法 第一种:继承Thread类 第二种:实现Runnable接口 第三种:实现Callable接口 第四种:线程池 + execute 第五种:线程池 + submit 总结 一.创建并运行线程的五种方法 第一种:继承Thread类 这种方式是最基础的一种方式,学过java的朋友都知道,不做赘述.需要注意的是:覆盖实现使用的是run方法,运行线程是start方法. public class FirstWay extends Thread { @Override p

  • java并发编程专题(二)----如何创建并运行java线程

    实现线程的两种方式 上一节我们了解了关于线程的一些基本知识,下面我们正式进入多线程的实现环节.实现线程常用的有两种方式,一种是继承Thread类,一种是实现Runnable接口.当然还有第三种方式,那就是通过线程池来生成线程,后面我们还会学习,一步一个脚印打好基础. Runnable接口: public interface Runnable { public abstract void run(); } Thread类: public class Thread implements Runnab

  • Java 并发编程中如何创建线程

    简介 线程是基本的调度单位,它被包含在进程之中,是进程中的实际运作单位,它本身是不会独立存在.一个进程至少有一个线程,进程中的多个线程共享进程的资源. Java中创建线程的方式有多种如继承Thread类.实现Runnable接口.实现Callable接口以及使用线程池的方式,线程池将在后面文章中单独介绍,这里先介绍另外三种方式. 继承Thread类 优点:在run方法里可以用this获取到当前线程. 缺点:由于Java不支持多继承,所以如果继承了Thread类后就不能再继承其他类. public

  • Java并发编程示例(七):守护线程的创建和运行

    Java有一种特殊线程,守护线程,这种线程优先级特别低,只有在同一程序中的其他线程不执行时才会执行. 由于守护线程拥有这些特性,所以,一般用为为程序中的普通线程(也称为用户线程)提供服务.它们一般会有一个无限循环,或用于等待请求服务,或用于执行任务等.它们不可以做任何重要的工作,因为我们不确定他们什么时才能分配到CPU运行时间,而且当没有其他线程执行时,它们就会自动终止.这类线程的一个典型应用就是Java的垃圾回收. 在本节示例中,我们将创建两个线程,一个是普通线程,向队列中写入事件:另外一个是

  • Java并发编程之线程创建介绍

    目录 1.线程与进程 2.线程的创建与运行 1.线程与进程 进程是代码在数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,线程则是一个实体,一个进程中至少有一个线程,是CPU调度和分配的基本单位,进程中的多个线程共享进程的资源. 进程的三个特征: 动态性 : 进程是运行中的程序,要动态的占用内存,CPU和网络等资源. 独立性 : 进程与进程之间是相互独立的,彼此有自己的独立内存区域. 并发性 : 假如CPU是单核,同一个时刻其实内存中只有一个进程在被执行.CPU会分时轮询切换依次为每

  • Java并发编程之线程状态介绍

    目录 线程状态概述 睡眠sleep方法 等待和唤醒 等待唤醒的一个小例子 线程状态概述 线程由生到死的完整过程: 当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态.在线程的生命周期中,有几种状态呢?在API中java.lang.Thread.State这个枚举中给出了六种线程状态: 线程状态 导致状态发生条件 NEW(新建) 线程刚被创建,但是并未启动.还没调用start方法.MyThread t = new MyThread只有线程对象,没有线程特征. Runna

  • Java并发编程之线程之间的共享和协作

    一.线程间的共享 1.1 ynchronized内置锁 用处 Java支持多个线程同时访问一个对象或者对象的成员变量 关键字synchronized可以修饰方法或者以同步块的形式来进行使用 它主要确保多个线程在同一个时刻,只能有一个线程处于方法或者同步块中 它保证了线程对变量访问的可见性和排他性(原子性.可见性.有序性),又称为内置锁机制. 对象锁和类锁 对象锁是用于对象实例方法,或者一个对象实例上的 类锁是用于类的静态方法或者一个类的class对象上的 类的对象实例可以有很多个,但是每个类只有

  • java并发编程_线程池的使用方法(详解)

    一.任务和执行策略之间的隐性耦合 Executor可以将任务的提交和任务的执行策略解耦 只有任务是同类型的且执行时间差别不大,才能发挥最大性能,否则,如将一些耗时长的任务和耗时短的任务放在一个线程池,除非线程池很大,否则会造成死锁等问题 1.线程饥饿死锁 类似于:将两个任务提交给一个单线程池,且两个任务之间相互依赖,一个任务等待另一个任务,则会发生死锁:表现为池不够 定义:某个任务必须等待池中其他任务的运行结果,有可能发生饥饿死锁 2.线程池大小 注意:线程池的大小还受其他的限制,如其他资源池:

  • Java 并发编程之线程挂起、恢复与终止

    挂起和恢复线程 Thread 的API中包含两个被淘汰的方法,它们用于临时挂起和重启某个线程,这些方法已经被淘汰,因为它们是不安全的,不稳定的.如果在不合适的时候挂起线程(比如,锁定共享资源时),此时便可能会发生死锁条件--其他线程在等待该线程释放锁,但该线程却被挂起了,便会发生死锁.另外,在长时间计算期间挂起线程也可能导致问题. 下面的代码演示了通过休眠来延缓运行,模拟长时间运行的情况,使线程更可能在不适当的时候被挂起: public class DeprecatedSuspendResume

  • Java并发编程之线程中断

    目录 线程中断: void interrupted()方法:中断线程,例如,当线程A运行时,线程B可以调用线程A的interrupted()方法来设置线程的中断标志为true并立即返回.设置标志仅仅是为了设置标志,线程A实际并没有被中断,它会继续往下执行,如果线程A因为调用了wait()方法,join()方法或者sleep()方法而引起的阻塞挂起,这时候若线程B调用线程A的interrupted()方法,线程A回调用这些方法的地方会抛出InterruptedException异常而返回. boo

  • Java并发编程之线程安全性

    目录 1.什么是线程安全性 2.原子性 2.1 竞争条件 2.2 复合操作 3.加锁机制 3.1 内置锁 3.2 重入 4.用锁保护状态 5.活跃性与性能 1.什么是线程安全性 当多个线程访问某个类时,不管运行时环境采用何种调用方式或者这些线程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类是线程安全的. 无状态的对象一定是线程安全的,比如:Servlet. 2.原子性 2.1 竞争条件 由于不恰当的执行时序而出现不正确的结果的情况,就是竞争

  • Java并发编程之线程间的通信

    一.概念简介 1.线程通信 在操作系统中,线程是个独立的个体,但是在线程执行过程中,如果处理同一个业务逻辑,可能会产生资源争抢,导致并发问题,通常使用互斥锁来控制该逻辑.但是在还有这样一类场景,任务执行是有顺序控制的,例如常见的报表数据生成: 启动数据分析任务,生成报表数据: 报表数据存入指定位置数据容器: 通知数据搬运任务,把数据写入报表库: 该场景在相对复杂的系统中非常常见,如果基于多线程来描述该过程,则需要线程之间通信协作,才能有条不紊的处理该场景业务. 2.等待通知机制 如上的业务场景,

  • Java 并发编程:volatile的使用及其原理解析

    Java并发编程系列[未完]: •Java 并发编程:核心理论 •Java并发编程:Synchronized及其实现原理 •Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) •Java 并发编程:线程间的协作(wait/notify/sleep/yield/join) •Java 并发编程:volatile的使用及其原理 一.volatile的作用 在<Java并发编程:核心理论>一文中,我们已经提到过可见性.有序性及原子性问题,通常情况下我们可以通过Synchroniz

随机推荐