Python Asyncio调度原理详情

目录
  • 前言
  • 1.基本介绍
  • 2.EventLoop的调度实现
  • 3.网络IO事件的处理

前言

在文章《Python Asyncio中Coroutines,Tasks,Future可等待对象的关系及作用》中介绍了Python的可等待对象作用,特别是Task对象在启动的时候可以自我驱动,但是一个Task对象只能驱动一条执行链,如果要多条链执行(并发),还是需要EventLoop来安排驱动,接下来将通过Python.Asyncio库的源码来了解EventLoop是如何运作的。

1.基本介绍

Python.Asyncio是一个大而全的库,它包括很多功能,而跟核心调度相关的逻辑除了三种可等待对象外,还有其它一些功能,它们分别位于runners.pybase_event.pyevent.py三个文件中。

runners.py文件有一个主要的类--Runner,它的主要职责是做好进入协程模式的事件循环等到初始化工作,以及在退出协程模式时清理还在内存的协程,生成器等对象。

协程模式只是为了能方便理解,对于计算机而言,并没有这样区分

event.py文件除了存放着EventLoop对象的接口以及获取和设置EventLoop的函数外,还有两个EventLoop可调度的对象,分别为HandlerTimerHandler,它们可以认为是EvnetLoop调用其它对象的容器,用于连接待调度对象和事件循环的关系,不过它们的实现非常简单,对于Handler它的源码如下:

# 已经移除了一些不想关的代码
class Handle:
    def __init__(self, callback, args, loop, context=None):
        # 初始化上下文,确保执行的时候能找到Handle所在的上下文
        if context is None:
            context = contextvars.copy_context()
        self._context = context
        self._loop = loop
        self._callback = callback
        self._args = args
        self._cancelled = False

    def cancel(self):
        # 设置当前Handle为取消状态
        if not self._cancelled:
            self._cancelled = True
            self._callback = None
            self._args = None
    def cancelled(self):
        return self._cancelled
    def _run(self):
        # 用于执行真正的函数,且通过context.run方法来确保在自己的上下文内执行。
        try:
            # 保持在自己持有的上下文中执行对应的回调
            self._context.run(self._callback, *self._args)
        except (SystemExit, KeyboardInterrupt):
            raise
        except BaseException as exc:
            cb = format_helpers._format_callback_source(
                self._callback, self._args)
            msg = f'Exception in callback {cb}'
            context = {
                'message': msg,
                'exception': exc,
                'handle': self,
            }
            self._loop.call_exception_handler(context)

通过源码可以发现,Handle功能十分简单,提供了可以被取消以及可以在自己所处的上下文执行的功能,而TimerHandle继承于HandleHandle多了一些和时间以及排序相关的参数,源码如下:

class TimerHandle(Handle):
    def __init__(self, when, callback, args, loop, context=None):
        super().__init__(callback, args, loop, context)
        self._when = when
        self._scheduled = False
    def __hash__(self):
        return hash(self._when)
    def __lt__(self, other):
        if isinstance(other, TimerHandle):
            return self._when < other._when
        return NotImplemented
    def __le__(self, other):
        if isinstance(other, TimerHandle):
            return self._when < other._when or self.__eq__(other)
        return NotImplemented
    def __gt__(self, other):
        if isinstance(other, TimerHandle):
            return self._when > other._when
        return NotImplemented
    def __ge__(self, other):
        if isinstance(other, TimerHandle):
            return self._when > other._when or self.__eq__(other)
        return NotImplemented
    def __eq__(self, other):
        if isinstance(other, TimerHandle):
            return (self._when == other._when and
                    self._callback == other._callback and
                    self._args == other._args and
                    self._cancelled == other._cancelled)
        return NotImplemented
    def cancel(self):
        if not self._cancelled:
            # 用于通知事件循环当前Handle已经退出了
            self._loop._timer_handle_cancelled(self)
        super().cancel()
    def when(self):
        return self._when

通过代码可以发现,这两个对象十分简单,而我们在使用Python.Asyncio时并不会直接使用到这两个对象,而是通过loop.call_xxx系列方法来把调用封装成Handle对象,然后等待EventLoop执行。 所以loop.call_xxx系列方法可以认为是EventLoop的注册操作,基本上所有非IO的异步操作都需要通过loop.call_xxx方法来把自己的调用注册到EventLoop中,比如Task对象就在初始化后通过调用loop.call_soon方法来注册到EventLoop中,loop.call_sonn的实现很简单,

它的源码如下:

class BaseEventLoop:
    ...
    def call_soon(self, callback, *args, context=None):
        # 检查是否事件循环是否关闭,如果是则直接抛出异常
        self._check_closed()
        handle = self._call_soon(callback, args, context)
        return handle

   def _call_soon(self, callback, args, context):
        # 把调用封装成一个handle,这样方便被事件循环调用
        handle = events.Handle(callback, args, self, context)
        # 添加一个handle到_ready,等待被调用
        self._ready.append(handle)
        return handle

可以看到call_soon真正相关的代码只有10几行,它负责把一个调用封装成一个Handle,并添加到self._reday中,从而实现把调用注册到事件循环之中。

loop.call_xxx系列函数除了loop.call_soon系列函数外,还有另外两个方法--loop.call_atloop.call_later,它们类似于loop.call_soon,不过多了一个时间参数,来告诉EventLoop在什么时间后才可以调用,同时通过loop.call_atloop.call_later注册的调用会通过Python的堆排序模块headpq注册到self._scheduled变量中,

具体代码如下:

class BaseEventLoop:
    ...
    def call_later(self, delay, callback, *args, context=None):
        if delay is None:
            raise TypeError('delay must not be None')
        timer = self.call_at(self.time() + delay, callback, *args, context=context)
        return timer

    def call_at(self, when, callback, *args, context=None):
        if when is None:
            raise TypeError("when cannot be None")
        self._check_closed()
        # 创建一个timer handle,然后添加到事件循环的_scheduled中,等待被调用
        timer = events.TimerHandle(when, callback, args, self, context)
        heapq.heappush(self._scheduled, timer)
        timer._scheduled = True
        return timer

2.EventLoop的调度实现

在文章《Python Asyncio中Coroutines,Tasks,Future可等待对象的关系及作用》中已经分析到了runner会通过loop.run_until_complete来调用mainTask从而开启EventLoop的调度,所以在分析EventLoop的调度时,应该先从loop.run_until_complete入手,

对应的源码如下:

class BaseEventLoop:
    def run_until_complete(self, future):
        ...
        new_task = not futures.isfuture(future)
        # 把coroutine转换成task,这样事件循环就可以调度了,事件循环的最小调度单位为task
        # 需要注意的是此时事件循环并没注册到全局变量中,所以需要显示的传进去,
        # 同时Task对象注册的时候,已经通过loop.call_soon把自己注册到事件循环中,等待调度
        future = tasks.ensure_future(future, loop=self)
        if new_task:
            # An exception is raised if the future didn't complete, so there
            # is no need to log the "destroy pending task" message
            future._log_destroy_pending = False
        # 当该task完成时,意味着当前事件循环失去了调度对象,无法继续调度,所以需要关闭当前事件循环,程序会由协程模式返回到线程模式
        future.add_done_callback(_run_until_complete_cb)
        try:
            # 事件循环开始运行
            self.run_forever()
        except:
            if new_task and future.done() and not future.cancelled():
                # The coroutine raised a BaseException. Consume the exception
                # to not log a warning, the caller doesn't have access to the
                # local task.
                future.exception()
            raise
        finally:
            future.remove_done_callback(_run_until_complete_cb)
        if not future.done():
            raise RuntimeError('Event loop stopped before Future completed.')

        return future.result()

    def run_forever(self):
        # 进行一些初始化工作
        self._check_closed()
        self._check_running()
        self._set_coroutine_origin_tracking(self._debug)
        self._thread_id = threading.get_ident()

        old_agen_hooks = sys.get_asyncgen_hooks()
        # 通过asyncgen钩子来自动关闭asyncgen函数,这样可以提醒用户生成器还未关闭
        sys.set_asyncgen_hooks(firstiter=self._asyncgen_firstiter_hook,
                               finalizer=self._asyncgen_finalizer_hook)
        try:
            # 设置当前在运行的事件循环到全局变量中,这样就可以在任一阶段获取到当前的事件循环了
            events._set_running_loop(self)
            while True:
                # 正真执行任务的逻辑
                self._run_once()
                if self._stopping:
                    break
        finally:
            # 关闭循环, 并且清理一些资源
            self._stopping = False
            self._thread_id = None
            events._set_running_loop(None)
            self._set_coroutine_origin_tracking(False)
            sys.set_asyncgen_hooks(*old_agen_hooks)

这段源码并不复杂,它的主要逻辑是通过把Corotinue转为一个Task对象,然后通过Task对象初始化时调用loop.call_sonn方法把自己注册到EventLoop中,最后再通过loop.run_forever中的循环代码一直运行着,直到_stopping被标记为True:

while True:
    # 正真执行任务的逻辑
    self._run_once()
    if self._stopping:
        break

可以看出,这段代码是确保事件循环能一直执行着,自动循环结束,而真正调度的核心是_run_once函数,

它的源码如下:

class BaseEventLoop:
    ...
    def _run_once(self):
        # self._scheduled是一个列表,它只存放TimerHandle
        sched_count = len(self._scheduled)
        ###############################
        # 第一阶段,整理self._scheduled #
        ###############################
        if (sched_count > _MIN_SCHEDULED_TIMER_HANDLES and
            self._timer_cancelled_count / sched_count > _MIN_CANCELLED_TIMER_HANDLES_FRACTION):
            # 当待调度的任务数量超过100且待取消的任务占总任务的50%时,才进入这个逻辑
            # 把需要取消的任务移除
            new_scheduled = []
            for handle in self._scheduled:
                if handle._cancelled:
                    # 设置handle的_cancelled为True,并且把handle从_scheduled中移除
                    handle._scheduled = False
                else:
                    new_scheduled.append(handle)

            # 重新排列堆
            heapq.heapify(new_scheduled)
            self._scheduled = new_scheduled
            self._timer_cancelled_count = 0
        else:
            # 需要取消的handle不多,则只会走这个逻辑,这里会把堆顶的handle弹出,并标记为不可调度,但不会访问整个堆
            while self._scheduled and self._scheduled[0]._cancelled:
                self._timer_cancelled_count -= 1
                handle = heapq.heappop(self._scheduled)
                handle._scheduled = False

        #################################
        # 第二阶段,计算超时值以及等待事件IO #
        #################################
        timeout = None
        # 当有准备调度的handle或者是正在关闭时,不等待,方便尽快的调度
        if self._ready or self._stopping:
            timeout = 0
        elif self._scheduled:
            # Compute the desired timeout.
            # 如果堆有数据时,通过堆顶的handle计算最短的超时时间,但是最多不能超过MAXIMUM_SELECT_TIMEOUT,以免超过系统限制
            when = self._scheduled[0]._when
            timeout = min(max(0, when - self.time()), MAXIMUM_SELECT_TIMEOUT)

        # 事件循环等待事件,直到有事件或者超时
        event_list = self._selector.select(timeout)

        ##################################################
        # 第三阶段,把满足条件的TimeHandle放入到self._ready中 #
        ##################################################
        # 获取得到的事件的回调,然后装填到_ready
        self._process_events(event_list)

        # 把一些在self._scheduled且满足调度条件的handle放到_ready中,比如TimerHandle。
        # end_time为当前时间+一个时间单位,猜测是能多处理一些这段时间内产生的事件
        end_time = self.time() + self._clock_resolution
        while self._scheduled:
            handle = self._scheduled[0]
            if handle._when >= end_time:
                break
            handle = heapq.heappop(self._scheduled)
            handle._scheduled = False
            self._ready.append(handle)

        ################################################################################
        # 第四阶段,遍历所有准备调度的handle,并且通过handle的context来执行handle对应的callback #
        ################################################################################
        ntodo = len(self._ready)
        for i in range(ntodo):
            handle = self._ready.popleft()
            # 如果handle已经被取消,则不调用
            if handle._cancelled:
                continue
            if self._debug:
                try:
                    self._current_handle = handle
                    t0 = self.time()
                    handle._run()
                    dt = self.time() - t0
                    if dt >= self.slow_callback_duration:
                        # 执行太久的回调,记录下来,这些需要开发者自己优化
                        logger.warning('Executing %s took %.3f seconds',
                                       _format_handle(handle), dt)
                finally:
                    self._current_handle = None
            else:
                handle._run()
        handle = None  # Needed to break cycles when an exception occurs.

通过源码分析,可以很明确的知道调度逻辑中第一步是先规整self._scheduled,在规整的过程是使用堆排序来进行的,因为堆排序在调度的场景下效率是非常高的,不过这段规整代码分成两种,我猜测是当需要取消的数量过多时直接遍历的效率会更高。 在规整self._scheduled后,就进入第二步,该步骤开始等待系统事件循环返回对应的事件,如果self._ready中有数据,就不做等待了,需要马上到下一步骤,以便能赶紧安排调度。 在得到系统事件循环得到的事件后,就进入到了第三步,该步骤会通过self._process_events方法处理对应的事件,并把事件对应的回调存放到了self._ready中,最后再遍历self._ready中的所有Handle并逐一执行(执行时可以认为EventLoop把控制权返回给对应的调用逻辑),至此一个完整的调度逻辑就结束了,并进入下一个调度逻辑。

3.网络IO事件的处理

注:由于系统事件循环的限制,所以文件IO一般还是使用多线程来执行,具体见:github.com/python/asyn…

在分析EventLoop调度实现的时候忽略了self._process_events的具体实现逻辑,因为_process_events方法所在asyncio.base_event.py文件中的BaseEventLoop类并未有具体实现的,因为网络IO相关的需要系统的事件循环来帮忙处理,所以与系统事件循环相关的逻辑都在asyncio.selector_events.py中的BaseSelectorEventLoop类中。BaseSelectorEventLoop类封装了selector模块与系统事件循环交互,使调用者不需要去考虑sock的创建以及sock产生的文件描述符的监听与注销等操作,下面以BaseSelectorEventLoop中自带的pipe为例子,分析BaseSelectorEventLoop是如何进行网络IO事件处理的。

在分析之前,先看一个例子,代码如下:

import asyncio
import threading
def task():
    print("task")
def run_loop_inside_thread(loop):
    loop.run_forever()
loop = asyncio.get_event_loop()
threading.Thread(target=run_loop_inside_thread, args=(loop,)).start()
loop.call_soon(task)

如果直接运行这个例子,它并不会输出task(不过在IDE使用DEBUG模式下线程启动会慢一点,所以会输出的),因为在调用loop.run_foreverEventLoop会一直卡在这段逻辑中:

event_list = self._selector.select(timeout)

所以调用loop.call_soon并不会使EventLoop马上安排调度,而如果把call_soon换成call_soon_threadsafe则可以正常输出,这是因为call_soon_threadsafe中多了一个self._write_to_self的调用,它的源码如下:

class BaseEventLoop:
    ...
    def call_soon_threadsafe(self, callback, *args, context=None):
        """Like call_soon(), but thread-safe."""
        self._check_closed()
        handle = self._call_soon(callback, args, context)
        self._write_to_self()
        return handle

由于这个调用是涉及到IO相关的,所以需要到BaseSelectorEventLoop类查看,接下来以pipe相关的网络IO操作来分析EventLoop是如何处理IO事件的(只演示reader对象,writer对象操作与reader类似),

对应的源码如下:

class BaseSelectorEventLoop(base_events.BaseEventLoop):
    #######
    # 创建 #
    #######
    def __init__(self, selector=None):
        super().__init__()

        if selector is None:
            # 获取最优的selector
            selector = selectors.DefaultSelector()
        self._selector = selector
        # 创建pipe
        self._make_self_pipe()
        self._transports = weakref.WeakValueDictionary()
    def _make_self_pipe(self):
        # 创建Pipe对应的sock
        self._ssock, self._csock = socket.socketpair()
        # 设置sock为非阻塞
        self._ssock.setblocking(False)
        self._csock.setblocking(False)
        self._internal_fds += 1
        # 阻塞服务端sock读事件对应的回调
        self._add_reader(self._ssock.fileno(), self._read_from_self)
    def _add_reader(self, fd, callback, *args):
        # 检查事件循环是否关闭
        self._check_closed()
        # 封装回调为handle对象
        handle = events.Handle(callback, args, self, None)
        try:
            key = self._selector.get_key(fd)
        except KeyError:
            # 如果没有注册到系统的事件循环,则注册
            self._selector.register(fd, selectors.EVENT_READ,
                                    (handle, None))
        else:
            # 如果已经注册过,则更新
            mask, (reader, writer) = key.events, key.data
            self._selector.modify(fd, mask | selectors.EVENT_READ,
                                  (handle, writer))
            if reader is not None:
                reader.cancel()
        return handle

    def _read_from_self(self):
        # 负责消费sock数据
        while True:
            try:
                data = self._ssock.recv(4096)
                if not data:
                    break
                self._process_self_data(data)
            except InterruptedError:
                continue
            except BlockingIOError:
                break
    #######
    # 删除 #
    #######
    def _close_self_pipe(self):
        # 注销Pipe对应的描述符
        self._remove_reader(self._ssock.fileno())
        # 关闭sock
        self._ssock.close()
        self._ssock = None
        self._csock.close()
        self._csock = None
        self._internal_fds -= 1

    def _remove_reader(self, fd):
        # 如果事件循环已经关闭了,就不用操作了
        if self.is_closed():
            return False
        try:
            # 查询文件描述符是否在selector中
            key = self._selector.get_key(fd)
        except KeyError:
            # 不存在则返回
            return False
        else:
            # 存在则进入移除的工作
            mask, (reader, writer) = key.events, key.data
            # 通过事件掩码判断是否有其它事件
            mask &= ~selectors.EVENT_READ
            if not mask:
                # 移除已经注册到selector的文件描述符
                self._selector.unregister(fd)
            else:
                # 移除已经注册到selector的文件描述符,并注册新的事件
                self._selector.modify(fd, mask, (None, writer))

            # 如果reader不为空,则取消reader
            if reader is not None:
                reader.cancel()
                return True
            else:
                return False

通过源码中的创建部分可以看到,EventLoop在启动的时候会创建一对建立通信的sock,并设置为非阻塞,然后把对应的回调封装成一个Handle对象并注册到系统事件循环中(删除则进行对应的反向操作),之后系统事件循环就会一直监听对应的事件,也就是EventLoop的执行逻辑会阻塞在下面的调用中,等待事件响应:

event_list = self._selector.select(timeout)

这时如果执行loop.call_soon_threadsafe,那么会通过write_to_self写入一点信息:

    def _write_to_self(self):
        csock = self._csock
        if csock is None:
            return
        try:
            csock.send(b'\0')
        except OSError:
            if self._debug:
                logger.debug("Fail to write a null byte into the self-pipe socket", exc_info=True)

由于csock被写入了数据,那么它对应的ssock就会收到一个读事件,系统事件循环在收到这个事件通知后就会把数据返回,然后EventLoop就会获得到对应的数据,并交给process_events方法进行处理,

它的相关代码如下:

class BaseSelectorEventLoop:
    def _process_events(self, event_list):
        for key, mask in event_list:
            # 从回调事件中获取到对应的数据,key.data在注册时是一个元祖,所以这里要对元祖进行解包
            fileobj, (reader, writer) = key.fileobj, key.data
            if mask & selectors.EVENT_READ and reader is not None:
                # 得到reader handle,如果是被标记为取消,就移除对应的文件描述符
                if reader._cancelled:
                    self._remove_reader(fileobj)
                else:
                    # 如果没被标记为取消,则安排到self._ready中
                    self._add_callback(reader)
            if mask & selectors.EVENT_WRITE and writer is not None:
                # 对于写对象,也是同样的道理。
                if writer._cancelled:
                    self._remove_writer(fileobj)
                else:
                    self._add_callback(writer)

    def _add_callback(self, handle):
        # 把回调的handle添加到_ready中
        assert isinstance(handle, events.Handle), 'A Handle is required here'
        if handle._cancelled:
            return
        assert not isinstance(handle, events.TimerHandle)
        self._ready.append(handle)

    def _remove_reader(self, fd):
        # 如果事件循环已经关闭了,就不用操作了
        if self.is_closed():
            return False
        try:
            # 查询文件描述符是否在selector中
            key = self._selector.get_key(fd)
        except KeyError:
            # 不存在则返回
            return False
        else:
            # 存在则进入移除的工作
            mask, (reader, writer) = key.events, key.data
            mask &= ~selectors.EVENT_READ
            if not mask:
                # 移除已经注册到selector的文件描述符
                self._selector.unregister(fd)
            else:
                self._selector.modify(fd, mask, (None, writer))

            if reader is not None:
                reader.cancel()
                return True
            else:
                return False

从代码中可以看出_process_events会对事件对应的文件描述符进行处理,并从事件回调中获取到对应的Handle对象添加到self._ready中,由EventLoop在接下来遍历self._ready并执行。

可以看到网络IO事件的处理并不复杂,因为系统事件循环已经为我们做了很多工作了,但是用户所有与网络IO相关的操作都需要有一个类似的操作,这样是非常的繁琐的,幸好asyncio库已经为我们做了封装,我们只要调用就可以了,方便了很多。

到此这篇关于Python Asyncio调度原理详情的文章就介绍到这了,更多相关Python Asyncio 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 浅谈Python协程asyncio

    一.协程 官方描述; 协程是子例程的更一般形式. 子例程可以在某一点进入并在另一点退出. 协程则可以在许多不同的点上进入.退出和恢复. 它们可通过 async def 语句来实现. 参见 PEP 492. 协程不是计算机内部提供的,不像进程.线程,由电脑本身提供,它是由程序员人为创造的, 实现函数异步执行. 协程(Coroutine),也可以被称为微线程,是一种用户太内的上下文切换技术,其实就是通过一个线程实现代码块相互切换执行.看上去像子程序,但执行过程中,在子程序内部可中断,然后转而执行别的

  • python协程与 asyncio 库详情

    目录 1.asyncio 异步 I/O 库 异步函数的定义 事件循环 event_loop 创建 task 回调返回值 循环事件关闭 2.本节爬虫项目 前言: python 中协程概念是从 3.4 版本增加的,但 3.4 版本采用是生成器实现,为了将协程和生成器的使用场景进行区分,使语义更加明确,在 python 3.5 中增加了 async 和 await 关键字,用于定义原生协程. 1.asyncio 异步 I/O 库 python 中的 asyncio 库提供了管理事件.协程.任务和线程的

  • Python使用signal定时结束AsyncIOScheduler任务的问题

    在使用aiohttp结合apscheduler的AsyncIOScheduler模拟定点并发的时候遇到两个问题 在调度器scheduler.start()后,程序直接退出(在Jupiter中任务可以正常启动)如何在指定时间调用scheduler.shutdown()? (因为程序直接退出了) 原调试代码如下: from datetime import datetime, timedelta import aiohttp from apscheduler.schedulers.asyncio im

  • Python协程asyncio 异步编程笔记分享

    目录 1.事件循环 2.协程和异步编程 2.1 基本使用 2.2 await 2.3 Task对象 1.事件循环 可以理解成为一个死循环,去检查任务列表中的任务,如果可执行就去执行,如果检查不到就是不可执行的,那就忽略掉去执行其他可执行的任务,如果IO结束了(比如说去百度下载图片,下载完了就会变成可执行任务)再去执行下载完成之后的逻辑 #这里的任务是有状态的,比如这个任务已经完成或者正在执行或者正在IO等待 任务列表 = [ 任务1, 任务2, 任务3,... ] while True: 可执行

  • Python asyncio的一个坑

    我们先从一个常见的Python编程错误开始说起,我已经见过非常多的程序员犯过这种错误了: def do_not_raise(user_defined_logic): try: user_defined_logic() except: logger.warning("User defined logic raises an exception", exc_info=True) # ignore 这段代码的错误之处在哪里呢? 我们从Python的异常结构开始说起.Python中的异常基类有

  • python 使用事件对象asyncio.Event来同步协程的操作

    事件对象asyncio.Event是基于threading.Event来实现的. 事件可以一个信号触发多个协程同步工作, 例子如下: import asyncio import functools def set_event(event): print('setting event in callback') event.set() async def coro1(event): print('coro1 waiting for event') await event.wait() print(

  • python 中的 asyncio 异步协程

    目录 一.定义协程 二.运行协程 三.协程回调 四.运行多个协程 五.run_forever 六.多协程中关闭run_forever 一.定义协程 asyncio 执行的任务,称为协程,但是Asyncio 并不能带来真正的并行 Python 的多线程因为 GIL(全局解释器锁)的存在,也不能带来真正的并行 import asyncio # 通过 async 定义一个协程 async def task(): print('这是一个协程') # 判断是否是一个协程,返回True print(asyn

  • Python Asyncio调度原理详情

    目录 前言 1.基本介绍 2.EventLoop的调度实现 3.网络IO事件的处理 前言 在文章<Python Asyncio中Coroutines,Tasks,Future可等待对象的关系及作用>中介绍了Python的可等待对象作用,特别是Task对象在启动的时候可以自我驱动,但是一个Task对象只能驱动一条执行链,如果要多条链执行(并发),还是需要EventLoop来安排驱动,接下来将通过Python.Asyncio库的源码来了解EventLoop是如何运作的. 1.基本介绍 Python

  • Python Asyncio库之asyncio.task常用函数详解

    目录 前记 0.基础 1.休眠--asyncio.sleep 2.屏蔽取消--asyncio.shield 3.超时--asyncio.wait_for 4.简单的等待--wait 5.迭代可等待对象的完成--asyncio.as_completed 前记 Asyncio在经过一段时间的发展以及获取Curio等第三方库的经验来提供更多的功能,目前高级功能也基本完善,但是相对于其他语言,Python的Asyncio高级功能还是不够的,但好在Asyncio的低级API也比较完善,开发者可以通过参考A

  • Python Asyncio中Coroutines,Tasks,Future可等待对象的关系及作用

    目录 前记 1.Asyncio的入口 2.两种Coroutine调用方法的区别 3.Task与Future 3.1.Future 3.2.Task 4.总结 前记 上一遍文章<Python中Async语法协程的实现>介绍了Python是如何以生成器来实现协程的以及Python Asyncio通过Future和Task的封装来实现协程的调度,而在Python Asyncio之中Coroutines, Tasks和Future都属于可等待对象,在使用的Asyncio的过程中,经常涉及到三者的转换和

  • Python Asyncio 库之同步原语常用函数详解

    目录 前记 0.基础 1.Lock 2.Event 4.Condition 5.Semaphore 前记 Asyncio的同步原语可以简化我们编写资源竞争的代码和规避资源竞争导致的Bug的出现. 但是由于协程的特性,在大部分业务代码中并不需要去考虑资源竞争的出现,导致Asyncio同步原语被使用的频率比较低,但是如果想基于Asyncio编写框架则需要学习同步原语的使用. 0.基础 同步原语都是适用于某些条件下对某个资源的争夺,在代码中大部分的资源都是属于一个代码块,而Python对于代码块的管理

  • python爬虫调度器用法及实例代码

    我们一般使用爬虫看到的都是最后的数据结果,对于整个的获取过程没有过多了解过.对于初学python的小伙伴们来说,不光是代码的练习,还是原理的分析都是必不可少的. 小编把整个爬取的过程分为了几个部分,从一开始的下载,到数据的去重解析,再到整个爬虫循环的结束,以图片和代码的双重形式展现给大家,希望能够对爬虫调度器有一个深刻的理解. 我们可以编写几个元件,每个元件完成一项功能,下图中的蓝底白字就是对这一流程的抽象: UrlManager:将存储和获取url以及url去重的几个步骤在url管理器中完成(

  • Python黑魔法之metaclass详情

    目录 一.什么是 metaclass 二.metaclass 能解决什么问题? 三.通过一个实例来理解 metaclass 四.Python 底层语言设计层面是如何实现 metaclass 的? 1.所有的 Python 的用户定义类,都是 type 这个类的实例. 2.用户自定义类,只不过是 type 类的 __call__ 运算符重载 3.,"超越变形"正常的类 四.使用 metaclass 的风险 关于Python 黑魔法 metaclass 的两种极端观点: 这种特性太牛逼了,

  • Python多线程的使用详情

    目录 一,实用方法 二.补充:Python多线程共享变量资源竞争问题 一,实用方法 1.线程之间执行是无序的,cpu调度哪个线程就执行哪个线程: 2.主线程等待所有子线程结束后再结束,设置守护线程可以实现当主线程结束时子线程立马结束: 3.设置守护线程:1.threading.Thread(daemon=True),2.线程对象.setDaemon(True): 4.线程之间共享全局变量,存在资源竞争问题. ''' 线程之间执行是无序的,cpu调度哪个线程就执行哪个线程 主线程会等待所有子线程结

  • Python 中面向接口编程详情

    目录 前言 概述 Python 接口 非正式接口 前言 接口在软件工程扮演重要角色,随着应用程序的功能不断扩展,代码库的更新和改变也难以管理.在许多情况下,会发现有一些看起来非常相似,但却不相关的类,这可能会导致一些难于维护.在本次分享中,将看到你如何使用 Python 接口来帮助确定. 主要从下面几个方面了解内容: 了解接口的工作原理和创建 Python 接口的注意事项 理解接口在像 Python 这样的动态语言中重要性 实现一个非正式的 Python 接口 使用 abc.ABCMeta 和 

  • Go 并发编程协程及调度机制详情

    目录 协程的概念 goroutine 的诞生 使用 goroutine 加快速度 goroutine 的机制原理 前言: 协程(coroutine)是 Go 语言最大的特色之一,goroutine 的实现其实是通过协程. 协程的概念 协程一词最早出现在 1963 年发表的论文中,该论文的作者为美国计算机科学家 Melvin E.Conway.著名的康威定律:“设计系统的架构受制于产生这些设计的组织的沟通结构.” 也是这个作者. 协程是一种用户态的轻量级线程,可以想成一个线程里面可以有多个协程,而

  • 用Python解决计数原理问题的方法

    前几天遇到这样一道数学题: 用四种不同颜色给三棱柱六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色方法有多少种? 当我看完题目后,顿时不知所措.于是我拿起草稿纸在一旁漫无目的地演算了一下,企图能找到解决方法.结果一无所获.于是打算通过程序算法解决这个问题.经过2个多小时的研究,终于完成了代码,并求得了答案. 由于Python写起来比较方便而且本人比较喜欢Python的语法,所以研究算法时我通常采用Python,此次也不例外.以下就是整个算法的实现过程. 两种算法 我

随机推荐