Python实现贪心算法的示例

今天一个研究生同学问我一个问题,问题如下:
超市有m个顾客要结账,每个顾客结账的时间为Ti( i取值从1到m)。超市有n个结账出口,请问全部顾客怎么选择出口,可以最早完成全部顾客的结账,并用代码实现。
其实利用的就是贪心算法来解决这个问题,那么,什么是贪心算法?怎么用贪心算法解决这个问题?让我一一道来。

一、贪心算法简介

贪心算法是一种对某些求最优解问题的更简单、更迅速的设计技术。贪心算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择,就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解。虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪心算法不要回溯 。

二、解决思路

1.同学导师给的思路

可以先让前N个人付款 后边顾客不断找出付款时间最短的依次排到前N个顾客按时间最长到最短的后边

2.问题分解

可以先假设只有一个收银台,那么我们可以很快的反应过来,最优的顺序就是按时间由小到大依次进行。
即最优解为A={t(1),t(2),….t(n)}(其中t(i)为第i个用户需要的服务时间),则每个用户等待时间为:
T(1)=t(1);T(2)=t(1)+t(2);…T(n):t(1)+t(2)+t(3)+……t(n);
那么总等待时问,即最优值为:
TA=n*t(1)+(n-1)*t(2)+…+(n+1-j)t(i)+…2t(n-1)+t(n);

三、算法代码实现

有了上边的分解,那么实现算法代码就非常的轻而易举了`

def greedy(customer_list, n):
 # customer_time_list为第j个队列上的某一个顾客的等待时间
 # sum_customer_time_list是求和数组
 # sum_customer_time_list[j]的值为第j个队列上所有顾客的等待时间
 # min_sum_customer_time为结账最小时间
 # 初始化一个大小为n的0列表
 customer_time_list = []
 sum_customer_time_list = []
 num = 0
 while num < n:
  customer_time_list.append(0)
  sum_customer_time_list.append(0)
  num += 1
 min_sum_customer_time = 0
 # 顾客的数量
 m = len(customer_list)
 customer_list.sort() #列表升序排序
 i = 0
 j = 0
 while i < m:
  customer_time_list[j] += customer_list[i]
  sum_customer_time_list[j] += customer_time_list[j]
  i += 1
  j += 1
  # 如果j到了最后一个结账出口,重新归零
  if j == n:
   j = 0
 # 汇总最小总时间
 k = 0
 while k < n:
  min_sum_customer_time += sum_customer_time_list[k]
  k += 1
 return min_sum_customer_time

四、算法测试结果

准备一个顾客排队序列和指定收银台数量,得到最小时间

customer_list = [6, 5, 3, 4, 2, 1]
print(greedy(customer_list, 2))

五、算法复杂性分析

程序主要是花费在对各顾客所需服务时间的排序和贪心算法,即计算平均服务时间上面。其中,贪心算法部分只有一重循环影响时间复杂度,其时间复杂度为O(n):而排序算法的时间复杂度为O(nlogn)。因此,综合来看算法的时间复杂度为O(nlogn)。

以上就是Python实现贪心算法的示例的详细内容,更多关于Python实现贪心算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • python 贪心算法的实现

    贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关. 基本思路 思想 贪心算法的基本思路是从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解.每一步只考虑一个数据,他的选取应该满足局部优化的条件.若

  • Python基于贪心算法解决背包问题示例

    本文实例讲述了Python基于贪心算法解决背包问题.分享给大家供大家参考,具体如下: 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关. 完全背包问题:给定n个物品和一个容量为C的背包,物品i的重量是Wi,其价值为Vi,背包问题是如何选择入背包

  • Python贪心算法实例小结

    本文实例讲述了Python贪心算法.分享给大家供大家参考,具体如下: 1. 找零钱问题:假设只有 1 分. 2 分.五分. 1 角.二角. 五角. 1元的硬币.在超市结账 时,如果 需要找零钱, 收银员希望将最少的硬币数找给顾客.那么,给定 需要找的零钱数目,如何求得最少的硬币数呢? # -*- coding:utf-8 -*- def main(): d = [0.01,0.02,0.05,0.1,0.2,0.5,1.0] # 存储每种硬币面值 d_num = [] # 存储每种硬币的数量 s

  • 浅谈Python实现贪心算法与活动安排问题

    贪心算法 原理:在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解.贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解. 特性:贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不

  • python买卖股票的最佳时机(基于贪心/蛮力算法)

    开始刷leetcode算法题 今天做的是"买卖股票的最佳时机" 题目要求 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票). 看到这个题目 最初的想法是蛮力法 通过两层循环 不断计算不同天之间的利润及利润和 下面上代码 class Solution(object): def maxProfit(self, pri

  • Python实现贪心算法的示例

    今天一个研究生同学问我一个问题,问题如下: 超市有m个顾客要结账,每个顾客结账的时间为Ti( i取值从1到m).超市有n个结账出口,请问全部顾客怎么选择出口,可以最早完成全部顾客的结账,并用代码实现. 其实利用的就是贪心算法来解决这个问题,那么,什么是贪心算法?怎么用贪心算法解决这个问题?让我一一道来. 一.贪心算法简介 贪心算法是一种对某些求最优解问题的更简单.更迅速的设计技术.贪心算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,省去了为找

  • Python 经典贪心算法之Prim算法案例详解

    最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空集合, V = {任选的一个起始节点} 循环(n – 1)次,每次选择一条边(v1,v2), 满足:v1属于V , v2不属于V.且(v1,v2)权值最小. E = E + (v1,v2) V = V + v2 最终E中的边是一棵最小生成树, V包含了全部节点. 以下图为例介绍Prim算法的执行过程

  • python实现AdaBoost算法的示例

    代码 ''' 数据集:Mnist 训练集数量:60000(实际使用:10000) 测试集数量:10000(实际使用:1000) 层数:40 ------------------------------ 运行结果: 正确率:97% 运行时长:65m ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 da

  • Python实现冒泡排序算法的示例解析

    目录 1. 算法描述 2. 算法分析 3. 动图展示 4. 代码实现 5. 算法升级 6. 时间复杂度分析 1. 算法描述 冒泡排序(Bubble Sort)是一种简单的排序算法.它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端. 2. 算法分析 1. 比较相邻的元素.如果第一个比第二个大(升序),就交换他们两个. 2. 对每

  • C++实现贪心算法的示例详解

    目录 区间问题 区间选点 最大不相交区间数量 区间分组 区间覆盖 Huffman树 合并果子 排序不等式 排队打水 绝对值不等式 货舱选址 区间问题 区间选点 给定 N 个闭区间 [ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点. 输出选择的点的最小数量. 位于区间端点上的点也算作区间内. 输入格式 第一行包含整数 N,表示区间数. 接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点. 输出格式 输出一个整数,表示所需的点的最小数量. 数据范围 1

  • python 实现A*算法的示例代码

    A*作为最常用的路径搜索算法,值得我们去深刻的研究.路径规划项目.先看一下维基百科给的算法解释:https://en.wikipedia.org/wiki/A*_search_algorithm A *是最佳优先搜索它通过在解决方案的所有可能路径(目标)中搜索导致成本最小(行进距离最短,时间最短等)的问题来解决问题. ),并且在这些路径中,它首先考虑那些似乎最快速地引导到解决方案的路径.它是根据加权图制定的:从图的特定节点开始,它构造从该节点开始的路径树,一次一步地扩展路径,直到其一个路径在预定

  • Python解决八皇后问题示例

    本文实例讲述了Python解决八皇后问题的方法.分享给大家供大家参考,具体如下: 八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上.八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n1×n1,而皇后个数也变成n2.而且仅当 n2 = 1 或 n1 ≥ 3 时问题有解. 这是一个典型的回溯算法,我们可以将问题进行分解: 首先,我们要想到某种方

随机推荐