详解Python中的测试工具

当我们在写程序的时候,我们需要通过测试来验证程序是否出错或者存在问题,但是,编写大量的测试来确保程序的每个细节都没问题会显得很繁琐。在Python中,我们可以借助一些标准模块来帮助我们自动完成测试过程,比如:

  • unittest: 一个通用的测试框架;
  • doctest: 一个更简单的模块,是为检查文档而设计的,但也非常适合用来编写单元测试。

下面,笔者将会简单介绍这两个模块在测试中的应用。

doctest

doctest模块会搜索那些看起来像是python交互式会话中的代码片段,然后尝试执行并验证结果。下面我们以doctest.testmod为例,函数doctest.testmod会读取模块中的所有文档字符串,查找看起来像是从交互式解释器中摘取的示例,再检查这些示例是否反映了实际情况。

我们先创建示例代码文件test_string_lower.py,完整代码如下:

# -*- coding: utf-8 -*-

def string_lower(string):
  '''
  返回一个字符串的小写
  :param string: type: str
  :return: the lower of input string
  >>> string_lower('AbC')
  'abc'
  >>> string_lower('ABC')
  'abc'
  >>> string_lower('abc')
  'abc'
  '''
  return string.lower()

if __name__ == '__main__':
  import doctest, test_string_lower
  doctest.testmod(test_string_lower)

首先先对程序进行说明,函数string_lower用于返回输入字符串的小写,函数中的注释中,一共包含了3个测试实例,期望尽可能地包含各种测试情况,接着在主函数中导入doctest, test_string_lower,再运行doctest中的testmod函数即可进行测试。

接着,我们开始测试。首先,在命令行中输入 python test_string_lower.py ,运行后会发现什么都没有输出,但这其实是件好事,它表明程序中的所有测试都通过了!那么,如果我们想要获得更多的输出呢?可在运行脚本的时候增加参数 -v ,这时候命令变成 python test_string_lower.py -v ,输出的结果如下:

Trying:
  string_lower('AbC')
Expecting:
  'abc'
ok
Trying:
  string_lower('ABC')
Expecting:
  'abc'
ok
Trying:
  string_lower('abc')
Expecting:
  'abc'
ok
1 items had no tests:
  test_string_lower
1 items passed all tests:
  3 tests in test_string_lower.string_lower
3 tests in 2 items.
3 passed and 0 failed.
Test passed

可以看到,程序测试的背后还是发生了很多事。接着,我们尝试着程序出错的情况,比如我们不小心把函数的返回写成了:

return string.upper()

这其实是返回输入字符串的大写了,而我们测试的实例却返回了输入字符串的小写,再运行该脚本(加上参数 -v ),输出的结果如下:

Failed example:
  string_lower('abc')
Expected:
  'abc'
Got:
  'ABC'
1 items had no tests:
  test_string_lower
**********************************************************************
1 items had failures:
  3 of  3 in test_string_lower.string_lower
3 tests in 2 items.
0 passed and 3 failed.
***Test Failed*** 3 failures.

这时候,程序测试失败,它不仅捕捉到了bug,还清楚地指出错误出在什么地方。我们不难把这个程序修改过来。

关于doctest模块的更详细的使用说明,可以参考网址: https://docs.python.org/2/lib... 。

unittest

unittest类似于流行的Java测试框架JUnit,它比doctest更灵活,更强大,能够帮助你以结构化的方式来编写庞大而详尽的测试集。

我们以一个简单的示例入手,首先我们编写my_math.py脚本,代码如下:

# -*- coding: utf-8 -*-
def product(x, y):
  '''
  :param x: int, float
  :param y: int, float
  :return: x * y
  '''
  return x * y

该函数实现的功能为:输入两个数x, y, 返回这两个数的乘积。接着是test_my_math.py脚本,完整的代码如下:

import unittest, my_math

class ProductTestcase(unittest.TestCase):

  def setUp(self):
    print('begin test')

  def test_integers(self):
    for x in range(-10, 10):
      for y in range(-10, 10):
        p = my_math.product(x, y)
        self.assertEqual(p, x*y, 'integer multiplication failed')

  def test_floats(self):
    for x in range(-10, 10):
      for y in range(-10, 10):
        x = x/10
        y = y/10
        p = my_math.product(x, y)
        self.assertEqual(p, x * y, 'integer multiplication failed')

if __name__ == '__main__':
  unittest.main()

函数unittest.main负责替你运行测试:在测试方法前执行setUp方法,示例化所有的TestCase子类,并运行所有名称以test打头的方法。assertEqual方法检车指定的条件(这里是相等),以判断指定的测试是成功了还是失败了。

接着,我们运行前面的测试,输出的结果如下:

begin test
.begin test
.
----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK

可以看到,该程序运行了两个测试,每个测试前都会输出'begin test', . 表示测试成功,若测试失败,则返回的是 F 。

接着模拟测试出错的情形,将my_math函数中的product方法改成返回:

return x + y

再运行测试脚本,输出的结果如下:

begin test
Fbegin test
F
======================================================================
FAIL: test_floats (__main__.ProductTestcase)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "test_my_math.py", line 20, in test_floats
    self.assertEqual(p, x * y, 'integer multiplication failed')
AssertionError: -2.0 != 1.0 : integer multiplication failed

======================================================================
FAIL: test_integers (__main__.ProductTestcase)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "test_my_math.py", line 12, in test_integers
    self.assertEqual(p, x*y, 'integer multiplication failed')
AssertionError: -20 != 100 : integer multiplication failed

----------------------------------------------------------------------
Ran 2 tests in 0.001s

FAILED (failures=2)

两条测试都未通过,返回的是 F ,并帮助你指出了错误的地方,接下来,你应该能快速地修复这个bug。

关于unittest模块的更加详细的说明,可以参考网址: https://docs.python.org/3/lib... 。

总结

以上所述是小编给大家介绍的Python中的测试工具,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会技术回复大家的!

(0)

相关推荐

  • Python自动化测试工具Splinter简介和使用实例

    Splinter 快速介绍 官方网站:http://splinter.cobrateam.info/ 官方介绍: Splinter is an open source tool for testingweb applications using Python. It lets you automate browser actions, such asvisiting URLs and interacting with their items 特性:1.可以模拟浏览器行为,访问指定的URL,并且可

  • Selenium(Python web测试工具)基本用法详解

    本文实例讲述了Selenium基本用法.分享给大家供大家参考,具体如下: Selenium是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Firefox,Safari,Google Chrome,Opera等.这个工具的主要功能包括:测试与浏览器的兼容性--测试你的应用程序看是否能够很好得工作在不同浏览器和操作系统之上.测试系统功能--创建回归测试检验软件功能和用户需求.

  • 基于Python的XSS测试工具XSStrike使用方法

    简介 XSStrike 是一款用于探测并利用XSS漏洞的脚本 XSStrike目前所提供的产品特性: 对参数进行模糊测试之后构建合适的payload 使用payload对参数进行穷举匹配 内置爬虫功能 检测并尝试绕过WAF 同时支持GET及POST方式 大多数payload都是由作者精心构造 误报率极低 debian及kali系统可直接下载 本.deb安装包 通用安装方法 使用如下命令进行下载: git clone https://github.com/UltimateHackers/XSStr

  • 详解Python中的测试工具

    当我们在写程序的时候,我们需要通过测试来验证程序是否出错或者存在问题,但是,编写大量的测试来确保程序的每个细节都没问题会显得很繁琐.在Python中,我们可以借助一些标准模块来帮助我们自动完成测试过程,比如: unittest: 一个通用的测试框架: doctest: 一个更简单的模块,是为检查文档而设计的,但也非常适合用来编写单元测试. 下面,笔者将会简单介绍这两个模块在测试中的应用. doctest doctest模块会搜索那些看起来像是python交互式会话中的代码片段,然后尝试执行并验证

  • 详解python中的 is 操作符

    大家可以与Java中的 == 操作符相互印证一下,加深一下对引用和对象的理解.原问题: Python为什么直接运行和在命令行运行同样语句但结果却不同,他们的缓存机制不同吗? 其实,高票答案已经说得很详细了.我只是再补充一点而已. is 操作符是Python语言的一个内建的操作符.它的作用在于比较两个变量是否指向了同一个对象. 与 == 的区别 class A(): def __init__(self, v): self.value = v def __eq__(self, t): return

  • 详解Python中生成随机数据的示例详解

    目录 随机性有多随机 加密安全性 PRNG random 模块 数组 numpy.random 相关数据的生成 random模块与NumPy对照表 CSPRNG 尽可能随机 os.urandom() secrets 最佳保存方式 UUID 工程随机性的比较 在日常工作编程中存在着各种随机事件,同样在编程中生成随机数字的时候也是一样,随机有多随机呢?在涉及信息安全的情况下,它是最重要的问题之一.每当在 Python 中生成随机数据.字符串或数字时,最好至少大致了解这些数据是如何生成的. 用于在 P

  • 详解IIS中URL重写工具的匹配URL-规则模式(rule patterns)

    rule patterns规则模式在IIS的URL重写模块中,是较为关键的设置.只有规则模式的URL匹配成功时,其他的规则才能起到作用.规则模式的匹配URL设置主要是匹配URL中的路径部分,一般使用正则表达式和通配符对URL路径进行匹配,下面会仔细的说明. 首先要了解规则模式是匹配URL中的哪一部分,假设当前有网站的URL地址为http://shiyousan.com/Home/Index?page=1,那么规则模式匹配的部分就是Home/Index,域名的主机部分和参数部分如果要匹配,则需要在

  • 详解IIS中的重写工具下关于操作重定向URL中的{R:N}与{C:N}使用介绍

    URL Rewrite(URL重写工具)作为IIS下较为常用的模块组件, 提供了重写.重定向.自定义响应.中止请求等功能.但是其相关的中文资料比较缺少,官方倒是有完整和详细的英文文档,之前我在项目中遇到需要设置重写/重定向URL操作规则时,对于范例中的{R:N}和{C:N}规则就理解的十分辛苦,因此写下本文分享下经验. 这里先附上官网的文档,其实文档链接在IIS的URL重写模块的右边菜单就有:URL Rewrite Module Configuration Reference(URL重写模块配置

  • 详解python中GPU版本的opencv常用方法介绍

    引言 本篇是以python的视角介绍相关的函数还有自我使用中的一些问题,本想在这篇之前总结一下opencv编译的全过程,但遇到了太多坑,暂时不太想回看做过的笔记,所以这里主要总结python下GPU版本的opencv. 主要函数说明 threshold():二值化,但要指定设定阈值 blendLinear():两幅图片的线形混合 calcHist() createBoxFilter ():创建一个规范化的2D框过滤器 canny边缘检测 createGaussianFilter():创建一个Ga

  • 详解Python中第三方库Faker

    项目开发初期,为了测试方便,我们总要造不少假数据到系统中,尽量模拟真实环境. 比如要创建一批用户名,创建一段文本,电话号码,街道地址.IP地址等等. 平时我们基本是键盘一顿乱敲,随便造个什么字符串出来,当然谁也不认识谁. 现在你不要这样做了,用Faker就能满足你的一切需求. 1. 安装 pip install Faker 2. 简单使用 >>> from faker import Faker >>> fake = Faker(locale='zh_CN') >&

  • 详解Python中Pygame键盘事件

    Pygame事件 pygame.event.EventType ''' • 事件本质上是一种封装后的数据类型(对象) • EventType是Pygame的一个类,表示事件类型 • 事件类型只有属性,没有方法 • 用户可自定义新的事件类型 ''' 事件类型及属性 事件处理函数 键盘事件及类型的使用 键盘事件及属性 pygame.event.KEYDOWN #键盘按下事件 pygame.event.KEYUP #键盘释放事件 event.unicode #按键的unicode码,平台有关,不推荐使

  • 详解Python中的自定义密码验证

    目录 在测试:nut_and_bolt:️之前 试验contains_character TestContainsCharacter字符 试验is_valid_size TestIsValidSize 试验is_valid_password TestIsValidPassword 重构is_valid_password 结论 这些帖子将分为三个部分. 1.密码验证功能 2.重构密码验证函数 3.对密码验证功能进行单元测试 这是Python系列中自定义密码验证的第三部分,也是最后一部分.我们将看看

  • 详解Python中sorted()和sort()的使用与区别

    目录 sort()方法是什么 如何妙用sorted() 方法 总结 在 Python 中,你可以使用 sorted() 方法或 sort() 方法对数据进行排序. 在本文中,我将提供 sorted() 和 sort() 方法的代码示例,并解释两者之间的区别. sort()方法是什么 此方法接受一个列表并对其进行排序.但,请记住此方法没有返回值,即返回None. 下面例子中,我们有一个数字列表,我们可以使用 sort() 方法按升序对列表进行排序. my_list = [67, 2, 999, 1

随机推荐