使用keras实现Precise, Recall, F1-socre方式

实现过程

from keras import backend as K
def Precision(y_true, y_pred):
 """精确率"""
 tp= K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # true positives
 pp= K.sum(K.round(K.clip(y_pred, 0, 1))) # predicted positives
 precision = tp/ (pp+ K.epsilon())
 return precision

def Recall(y_true, y_pred):
 """召回率"""
 tp = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # true positives
 pp = K.sum(K.round(K.clip(y_true, 0, 1))) # possible positives
 recall = tp / (pp + K.epsilon())
 return recall

def F1(y_true, y_pred):
 """F1-score"""
 precision = Precision(y_true, y_pred)
 recall = Recall(y_true, y_pred)
 f1 = 2 * ((precision * recall) / (precision + recall + K.epsilon()))
 return f1 

补充知识:分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)

四个基本概念

TP、True Positive 真阳性:预测为正,实际也为正

FP、False Positive 假阳性:预测为正,实际为负

FN、False Negative 假阴性:预测与负、实际为正

TN、True Negative 真阴性:预测为负、实际也为负。

【一致判真假,预测判阴阳。】

以分类问题为例:(word公式为什么粘不过来??头疼。)

首先看真阳性:真阳性的定义是“预测为正,实际也是正”,这个最好理解,就是指预测正确,是哪个类就被分到哪个类。对类A而言,TP的个位数为2,对类B而言,TP的个数为2,对类C而言,TP的个数为1。

然后看假阳性,假阳性的定义是“预测为正,实际为负”,就是预测为某个类,但是实际不是。对类A而言,FP个数为0,我们预测之后,把1和2分给了A,这两个都是正确的,并不存在把不是A类的值分给A的情况。类B的FP是2,"3"和"8"都不是B类,但却分给了B,所以为假阳性。类C的假阳性个数为2。

最后看一下假阴性,假阴性的定义是“预测为负,实际为正”,对类A而言,FN为2,"3"和"4"分别预测为B和C,但是实际是A,也就是预测为负,实际为正。对类B而言,FN为1,对类C而言,FN为1。

具体情况看如下表格:


A


B


C


总计


TP


2


2


1


5


FP


0


2


2


4


FN


2


1


1


4

感谢这两位的指正

精确率和召回率

计算我们预测出来的某类样本中,有多少是被正确预测的。针对预测样本而言。

针对原先实际样本而言,有多少样本被正确的预测出来了。

套用网上的一个例子:

某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:

精确率 = 700 / (700 +200 + 100) = 70%

召回率 = 700 / 1400 =50%

可以吧上述的例子看成分类预测问题,对于“鲤鱼来说”,TP真阳性为700,FP假阳性为300,FN假阴性为700。

Precison=TP/(TP+FP)=700(700+300)=70%

Recall=TP/(TP+FN)=700/(700+700)=50%

将上述例子,改变一下:把池子里的所有的鲤鱼、虾和鳖都一网打尽,观察这些指标的变化。

精确率 = 1400 / (1400 +300 + 300) = 70%

召回率 = 1400 / 1400 =100%

TP为1400:有1400条鲤鱼被预测出来;FP为600:有600个生物不是鲤鱼类,却被归类到鲤鱼;FN为0,鲤鱼都被归类到鲤鱼类去了,并没有归到其他类。

Precision=TP/(TP+FP)=1400/(1400+600)=70%

Recall=TP/(TP+FN)=1400/(1400)=100%

其实就是分母不同,一个分母是预测为正的样本数,另一个是原来样本中所有的正样本数。

作为预测者,我们当然是希望,Precision和Recall都保持一个较高的水准,但事实上这两者在某些情况下有矛盾的。比如极端情况下,我们只搜索出了一个结果,且是正确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高,此时我们可以引出另一个评价指标—F1-Score(F-Measure)。

F1-Score

F1分数(F1 Score),是统计学中用来衡量二分类模型精确度的一种指标。它同时兼顾了分类模型的精确率和召回率。F1分数可以看作是模型精确率和召回率的一种加权平均,它的最大值是1,最小值是0。(出自百度百科)

数学定义:F1分数(F1-Score),又称为平衡F分数(BalancedScore),它被定义为精确率和召回率的调和平均数。

更一般的,我们定义Fβ分数为:

除了F1分数之外,F0.5分数和F2分数,在统计学中也得到了大量应用,其中,F2分数中,召回率的权重高于精确率,而F0.5分数中,精确率的权重高于召回率。

Micro-F1和Macro-F1

最后看Micro-F1和Macro-F1。在第一个多标签分类任务中,可以对每个“类”,计算F1,显然我们需要把所有类的F1合并起来考虑。

这里有两种合并方式:

第一种计算出所有类别总的Precision和Recall,然后计算F1。

例如依照最上面的表格来计算:Precison=5/(5+4)=0.556,Recall=5/(5+4)=0.556,然后带入F1的公式求出F1,这种方式被称为Micro-F1微平均。

第二种方式是计算出每一个类的Precison和Recall后计算F1,最后将F1平均。

例如上式A类:P=2/(2+0)=1.0,R=2/(2+2)=0.5,F1=(2*1*0.5)/1+0.5=0.667。同理求出B类C类的F1,最后求平均值,这种范式叫做Macro-F1宏平均。

本篇完,如有错误,还望指正。 以上这篇使用keras实现Precise, Recall, F1-socre方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras 读取多标签图像数据方式

    我所接触的多标签数据,主要包括两类: 1.一张图片属于多个标签,比如,data:一件蓝色的上衣图片.jpg,label:蓝色,上衣.其中label包括两类标签,label1第一类:上衣,裤子,外套.label2第二类,蓝色,黑色,红色.这样两个输出label1,label2都是是分类,我们可以直接把label1和label2整合为一个label,直接编码,比如[蓝色,上衣]编码为[011011].这样模型的输出也只需要一个输出.实现了多分类. 2.一张图片属于多个标签,但是几个标签不全是分类.比

  • 使用Keras实现简单线性回归模型操作

    神经网络可以用来模拟回归问题 (regression),实质上是单输入单输出神经网络模型,例如给下面一组数据,用一条线来对数据进行拟合,并可以预测新输入 x 的输出值. 一.详细解读 我们通过这个简单的例子来熟悉Keras构建神经网络的步骤: 1.导入模块并生成数据 首先导入本例子需要的模块,numpy.Matplotlib.和keras.models.keras.layers模块.Sequential是多个网络层的线性堆叠,可以通过向Sequential模型传递一个layer的list来构造该

  • 升级keras解决load_weights()中的未定义skip_mismatch关键字问题

    1.问题描述 在用yolov3训练自己的数据集时,尝试加载预训练的权重,在冻结前154层的基础上,利用自己的数据集finetune. 出现如下错误: load_weights(),got an unexpected keyword argument skip_mismatch 2.解决方法 因为keras旧版本没有这一定义,在新的版本中有这一关键字的定义,因此,更新keras版本至2.1.5即可解决. source activate env pip uninstall keras pip ins

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

  • 浅谈cv2.imread()和keras.preprocessing中的image.load_img()区别

    1.image.load_img() from keras.preprocessing import image img_keras = image.load_img('./original/dog/880.jpg') print(img_keras) img_keras = image.img_to_array(img_keras) print(img_keras[:,1,1]) 效果如下: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB s

  • 使用keras实现Precise, Recall, F1-socre方式

    实现过程 from keras import backend as K def Precision(y_true, y_pred): """精确率""" tp= K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # true positives pp= K.sum(K.round(K.clip(y_pred, 0, 1))) # predicted positives precision = tp/ (p

  • keras得到每层的系数方式

    使用keras搭建好一个模型,训练好,怎么得到每层的系数呢: weights = np.array(model.get_weights()) print(weights) print(weights[0].shape) print(weights[1].shape) 这样系数就被存放到一个np中了. 补充知识:使用keras框架编写的深度模型 输出及每一层的特征可视化 使用训练好的模型进行预测的时候,为分析效果,通常需要对特征提取过程中的特征映射做可视化操作 本文以keras为例,对特征可视化操

  • TensorFlow keras卷积神经网络 添加L2正则化方式

    我就废话不多说了,大家还是直接看代码吧! model = keras.models.Sequential([ #卷积层1 keras.layers.Conv2D(32,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)), #池化层1 keras.l

  • 使用Keras预训练模型ResNet50进行图像分类方式

    Keras提供了一些用ImageNet训练过的模型:Xception,VGG16,VGG19,ResNet50,InceptionV3.在使用这些模型的时候,有一个参数include_top表示是否包含模型顶部的全连接层,如果包含,则可以将图像分为ImageNet中的1000类,如果不包含,则可以利用这些参数来做一些定制的事情. 在运行时自动下载有可能会失败,需要去网站中手动下载,放在"~/.keras/models/"中,使用WinPython则在"settings/.ke

  • Keras设定GPU使用内存大小方式(Tensorflow backend)

    通过设置Keras的Tensorflow后端的全局变量达到. import os import tensorflow as tf import keras.backend.tensorflow_backend as KTF def get_session(gpu_fraction=0.3): '''Assume that you have 6GB of GPU memory and want to allocate ~2GB''' num_threads = os.environ.get('OM

  • keras实现多种分类网络的方式

    Keras应该是最简单的一种深度学习框架了,入门非常的简单. 简单记录一下keras实现多种分类网络:如AlexNet.Vgg.ResNet 采用kaggle猫狗大战的数据作为数据集. 由于AlexNet采用的是LRN标准化,Keras没有内置函数实现,这里用batchNormalization代替 收件建立一个model.py的文件,里面存放着alexnet,vgg两种模型,直接导入就可以了 #coding=utf-8 from keras.models import Sequential f

  • Keras load_model 导入错误的解决方式

    在使用Keras load_model时,会出现以下报错: ImportError: Failed to import pydot. You must install pydot and graphviz for `pydotprint` to work. 解决办法: $ pip install pydot $ sudo apt-get install graphviz 补充知识:Keras 保存model到指定文件夹和加载load_model指定文件夹中的文件(踩坑) 我们一般保存模型和加载模

  • 基于Keras的格式化输出Loss实现方式

    在win7 64位,Anaconda安装的Python3.6.1下安装的TensorFlow与Keras,Keras的backend为TensorFlow.在运行Mask R-CNN时,在进行调试时想知道PyCharm (Python IDE)底部窗口输出的Loss格式是在哪里定义的,如下图红框中所示: 图1 训练过程的Loss格式化输出 在上图红框中,Loss的输出格式是在哪里定义的呢?有一点是明确的,即上图红框中的内容是在训练的时候输出的.那么先来看一下Mask R-CNN的训练过程.Ker

  • keras输出预测值和真实值方式

    在使用keras搭建神经网络时,有时需要查看一下预测值和真是值的具体数值,然后可以进行一些其他的操作.这几天查阅了很多资料.好像没办法直接access到训练时的数据.所以我们可以通过回调函数,传入新的数据,然后查看预测值和真是值. 参考这篇解决: https://stackoverflow.com/questions/47079111/create-keras-callback-to-save-model-predictions-and-targets-for-each-batch-durin

随机推荐