如何理解软件系统的高并发

概述

当前,数字化在给企业带来业务创新,推动企业高速发展的同时,也给企业的IT软件系统带来了严峻的挑战。面对流量高峰,不同的企业是如何通过技术手段解决高并发难题的呢?

引言

软件系统有三个追求:高性能、高并发、高可用,俗称三高。三者既有区别也有联系,门门道道很多,全面讨论需要三天三夜,本篇讨论高并发。

高并发(High Concurrency)。并发是操作系统领域的一个概念,指的是一段时间内多任务流交替执行的现象,后来这个概念被泛化,高并发用来指大流量、高请求的业务情景,比如春运抢票,电商双十一,秒杀大促等场景。

很多程序员每天忙着搬砖,平时接触不到高并发,哪天受不了跑去面试,还常常会被面试官犀利的高并发问题直接KO,其实吧,高并发系统也不高深,我保证任何一个智商在线的看过这篇文章后,都能战胜恐惧,重拾生活的信心。

本文先介绍高并发系统的度量指标,然后讲述高并发系统的设计思路,再梳理高并发的关键技术,最后结合作者的经验做一些延伸探讨。

高并发的度量指标

既然是高并发系统,那并发一定要高,不然就名不副实。并发的指标一般有QPS、TPS、IOPS,这几个指标都是可归为系统吞吐率,QPS越高系统能hold住的请求数越多,但光关注这几个指标不够,我们还需要关注RT,即响应时间,也就是从发出request到收到response的时延,这个指标跟吞吐往往是此消彼长的,我们追求的是一定时延下的高吞吐。

比如有100万次请求,99万次请求都在10毫秒内响应,其他次数10秒才响应,平均时延不高,但时延高的用户受不了,所以,就有了TP90/TP99指标,这个指标不是求平均,而是把时延从小到大排序,取排名90%/99%的时延,这个指标越大,对慢请求越敏感。

除此之外,有时候,我们也会关注可用性指标,这可归到稳定性。

一般而言,用户感知友好的高并发系统,时延应该控制在250毫秒以内。

什么样的系统才能称为高并发?这个不好回答,因为它取决于系统或者业务的类型。不过我可以告诉你一些众所周知的指标,这样能帮助你下次在跟人扯淡的时候稍微靠点儿谱,不至于贻笑大方。

通常,数据库单机每秒也就能抗住几千这个量级,而做逻辑处理的服务单台每秒抗几万、甚至几十万都有可能,而消息队列等中间件单机每秒处理个几万没问题,所以我们经常听到每秒处理数百万、数千万的消息中间件集群,而像阿某的API网关,每日百亿请求也有可能。

高并发的设计思路

高并发的设计思路有两个方向:

  • 垂直方向扩展,也叫竖向扩展
  • 水平方向扩展,也叫横向扩展

垂直方向:提升单机能力

提升单机处理能力又可分为硬件和软件两个方面:

  • 硬件方向,很好理解,花钱升级机器,更多核更高主频更大存储空间更多带宽
  • 软件方向,包括用各快的数据结构,改进架构,应用多线程、协程,以及上性能优化各种手段,但这玩意儿天花板低,就像提升个人产出一样,996、007、最多24 X 7。

水平方向:分布式集群

为了解决分布式系统的复杂性问题,一般会用到架构分层和服务拆分,通过分层做隔离,通过微服务解耦。

这个理论上没有上限,只要做好层次和服务划分,加机器扩容就能满足需求,但实际上并非如此,一方面分布式会增加系统复杂性,另一方面集群规模上去之后,也会引入一堆AIOps、服务发现、服务治理的新问题。

因为垂直向的限制,所以,我们通常更关注水平扩展,高并发系统的实施也主要围绕水平方向展开。

高并发的关键技术

玩具式的网络服务程序,用户可以直连服务器,甚至不需要数据库,直接写磁盘文件。但春运购票系统显然不能这么做,它肯定扛不住这个压力,那一般的高并发系统是怎么做呢?比如某宝这样的正经系统是怎么处理高并发的呢?

其实大的思路都差不多,层次划分 + 功能划分。可以把层次划分理解为水平方向的划分,而功能划分理解为垂直方向的划分。

首先,用户不能直连服务器,要做分布式就要解决“分”的问题,有多个服务实例就需要做负载均衡,有不同服务类型就需要服务发现。

集群化:负载均衡

负载均衡就是把负载(request)均衡分配到不同的服务实例,利用集群的能力去对抗高并发,负载均衡是服务集群化的实施要素,它分3种:

1.DNS负载均衡,客户端通过URL发起网络服务请求的时候,会去DNS服务器做域名解释,DNS会按一定的策略(比如就近策略)把URL转换成IP地址,同一个URL会被解释成不同的IP地址,这便是DNS负载均衡,它是一种粗粒度的负载均衡,它只用URL前半部分,因为DNS负载均衡一般采用就近原则,所以通常能降低时延,但DNS有cache,所以也会更新不及时的问题。

2.硬件负载均衡,通过布置特殊的负载均衡设备到机房做负载均衡,比如F5,这种设备贵,性能高,可以支撑每秒百万并发,还能做一些安全防护,比如防火墙。

3.软件负载均衡,根据工作在ISO 7层网络模型的层次,可分为四层负载均衡(比如章文嵩博士的LVS)和七层负载均衡(NGINX),软件负载均衡配置灵活,扩展性强,阿某云的SLB作为服务对外售卖,Nginx可以对URL的后半部做解释承担API网关的职责。

所以,完整的负载均衡链路是 client <-> DNS负载均衡 -> F5 -> LVS/SLB -> NGINX

不管选择哪种LB策略,或者组合LB策略,逻辑上,我们都可以视为负载均衡层,通过添加负载均衡层,我们将负载均匀分散到了后面的服务集群,具备基础的高并发能力,但这只是万里长征第一步。

数据库层面:分库分表+读写分离

前面通过负载均衡解决了无状态服务的水平扩展问题,但我们的系统不全是无状态的,后面通常还有有状态的数据库,所以解决了前面的问题,存储有可能成为系统的瓶颈,我们需要对有状态存储做分片路由。

数据库的单机QPS一般不高,也就几千,显然满足不了高并发的要求。

所以,我们需要做分库分表 + 读写分离。

就是把一个库分成多个库,部署在多个数据库服务上,主库承载写请求,从库承载读请求。从库可以挂载多个,因为很多场景写的请求远少于读的请求,这样就把对单个库的压力降下来了。

如果写的请求上升就继续分库分表,如果读的请求上升就挂更多的从库,但数据库天生不是很适合高并发,而且数据库对机器配置的要求一般很高,导致单位服务成本高,所以,这样加机器抗压力成本太高,还得另外想招。

读多写少:缓存

缓存的理论依据是局部性原理。

一般系统的写入请求远少于读请求,针对写少读多的场景,很适合引入缓存集群。

在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求,因为缓存集群很容易做到高性能,所以,这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。

缓存的命中率一般能做到很高,而且速度很快,处理能力也强(单机很容易做到几万并发),是理想的解决方案。

CDN本质上就是缓存,被用户大量访问的静态资源缓存在CDN中是目前的通用做法。

缓存也有很多需要谨慎处理的问题

1.一致性问题:(a)更新db成功+更新cache失败 -> 不一致 (b)更新db失败+更新cache成功 -> 不一致 ©更新db成功+淘汰缓存失败 -> 不一致

2.缓存穿透:查询一定不存在的数据,会穿透缓存直接压到数据库,从而导致缓存失去作用,如果有人利用这个漏洞,大量查询一定不存在的数据,会对数据库造成压力,甚至打挂数据库。解决方案:布隆过滤器 或者 简单的方案,查询不存在的key,也把空结果写入缓存(设置较短的过期淘汰时间),从而降低命失

3.缓存雪崩:如果大量缓存在一个时刻同时失效,则请求会转到DB,则对DB形成压迫,导致雪崩。简单的解决方案是为缓存失效时间添加随机值,降低同一时间点失效淘汰缓存数,避免集体失效事件发生

但缓存是针对读,如果写的压力很大,怎么办?

高写入:消息中间件

同理,通过跟主库加机器,耗费的机器资源是很大的,这个就是数据库系统的特点所决定的。

相同的资源下,数据库系统太重太复杂,所以并发承载能力就在几千/s的量级,所以此时你需要引入别的一些技术。

比如说消息中间件技术,也就是MQ集群,它是非常好的做写请求异步化处理,实现削峰填谷的效果。

消息队列能做解耦,在只需要最终一致性的场景下,很适合用来配合做流控。

假如说,每秒是1万次写请求,其中比如5千次请求是必须请求过来立马写入数据库中的,但是另外5千次写请求是可以允许异步化等待个几十秒,甚至几分钟后才落入数据库内的。

那么此时完全可以引入消息中间件集群,把允许异步化的每秒5千次请求写入MQ,然后基于MQ做一个削峰填谷。比如就以平稳的1000/s的速度消费出来然后落入数据库中即可,此时就会大幅度降低数据库的写入压力。

业界有很多著名的消息中间件,比如ZeroMQ,rabbitMQ,kafka等。

消息队列本身也跟缓存系统一样,可以用很少的资源支撑很高的并发请求,用它来支撑部分允许异步化的高并发写入是很合适的,比使用数据库直接支撑那部分高并发请求要减少很多的机器使用量。

避免挤兑:流控

再强大的系统,也怕流量短事件内集中爆发,就像银行怕挤兑一样,所以,高并发另一个必不可少的模块就是流控。

流控的关键是流控算法,有4种常见的流控算法。

1.计数器算法(固定窗口):计数器算法是使用计数器在周期内累加访问次数,当达到设定的限流值时,触发限流策略,下一个周期开始时,进行清零,重新计数,实现简单。计数器算法方式限流对于周期比较长的限流,存在很大的弊端,有严重的临界问题。

2.滑动窗口算法:将时间周期分为N个小周期,分别记录每个小周期内访问次数,并且根据时间滑动删除过期的小周期,当滑动窗口的格子划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。此算法可以很好的解决固定窗口算法的临界问题。

3.漏桶算法:访问请求到达时直接放入漏桶,如当前容量已达到上限(限流值),则进行丢弃(触发限流策略)。漏桶以固定的速率进行释放访问请求(即请求通过),直到漏桶为空。分布式环境下实施难度高。

4.令牌桶算法:程序以r(r=时间周期/限流值)的速度向令牌桶中增加令牌,直到令牌桶满,请求到达时向令牌桶请求令牌,如获取到令牌则通过请求,否则触发限流策略。分布式环境下实施难度高。

高并发的实践经验

接入-逻辑-存储是经典的互联网后端分层,但随着业务规模的提高,逻辑层的复杂度也上升了,所以,针对逻辑层的架构设计也出现很多新的技术和思路,常见的做法包括系统拆分,微服务。

除此之外,也有很多业界的优秀实践,包括某信服务器通过协程(无侵入,已开源libco)改造,极大的提高了系统的并发度和稳定性,另外,缓存预热,预计算,批量读写(减少IO),池技术等也广泛应用在实践中,有效的提升了系统并发能力。

为了提升并发能力,逻辑后端对请求的处理,一般会用到生产者-消费者多线程模型,即I/O线程负责网络IO,协议编解码,网络字节流被解码后产生的协议对象,会被包装成task投入到task queue,然后worker线程会从该队列取出task执行,有些系统会用多进程而非多线程,通过共享存储,维护2个方向的shm queue,一个input q,一个output q,为了提高并发度,有时候会引入协程,协程是用户线程态的多执行流,它的切换成本更低,通常有更好的调度效率。

另外,构建漏斗型业务或者系统,从客户端请求到接入层,到逻辑层,到DB层,层层递减,过滤掉请求,Fail Fast(尽早发现尽早过滤),嘴大屁眼小,哈哈。

漏斗型系统不仅仅是一个技术模型,它也可以是一个产品思维,配合产品的用户分流,逻辑分离,可以构建全方位的立体模型。

小结

莫让浮云遮望眼,除去繁华识真颜。我们不能掌握了大方案,吹完了牛皮,而忽视了编程最本质的东西,掌握最基本最核心的编程能力,比如数据架构和算法,设计,惯用法,培养技术的审美,也是很重要的,既要致高远,又要尽精微。

以上就是如何理解软件系统的高并发的详细内容,更多关于软件系统的高并发的资料请关注我们其它相关文章!

(0)

相关推荐

  • MySQL高并发生成唯一订单号的方法实现

    前言 这篇博文发布后,有朋友问有没有SQL server版本的,现在有了==>传送门 一.场景再现 在一个erp进销存系统或0A等其他系统中,如果多人同时进行生成订单号的操作的话,容易出现多人获得同一个订单号的情况,对公司业务造成不可挽回的损失 二.如何避免高并发情况订单号不唯一 我们可以利用存储过程和数据表搭配,建立一张表和创建存储过程,存储过程负责生成订单号,表负责处理唯一性问题 当存储过程生成一个订单编号,首先先把订单号写进表中,再把订单号结果显示出来,把生成的订单号写进表里会出现两种情况

  • PHP解决高并发的优化方案实例

    我们通常衡量一个Web系统的吞吐率的指标是QPS(Query Per Second,每秒处理请求数),解决每秒数万次的高并发场景,这个指标非常关键.举个例子,我们假设处理一个业务请求平均响应时间为100ms,同时,系统内有20台Apache的Web服务器,配置MaxClients为500个(表示Apache的最大连接数目). 那么,我们的Web系统的理论峰值QPS为(理想化的计算方式): 20*500/0.1 = 100000 (10万QPS) 咦?我们的系统似乎很强大,1秒钟可以处理完10万的

  • Redis处理高并发机制原理及实例解析

    1.Redis是基于内存的,内存的读写速度非常快: 2.Redis是单线程的,省去了很多上下文切换线程的时间: 3.Redis使用多路复用技术,可以处理并发的连接.非阻塞IO 内部实现采用epoll,采用了epoll+自己实现的简单的事件框架.epoll中的读.写.关闭.连接都转化成了事件,然后利用epoll的多路复用特性,绝不在io上浪费一点时间. 下面重点介绍单线程设计和IO多路复用核心设计快的原因 为什么Redis是单线程的 1.官方答案 因为Redis是基于内存的操作,CPU不是Redi

  • Redis高并发问题的解决方法

    本文讲述了Redis高并发问题的解决办法.分享给大家供大家参考,具体如下: redis为什么会有高并发问题 redis的出身决定 redis是一种单线程机制的nosql数据库,基于key-value,数据可持久化落盘.由于单线程所以redis本身并没有锁的概念,多个客户端连接并不存在竞争关系,但是利用jedis等客户端对redis进行并发访问时会出现问题.发生连接超时.数据转换错误.阻塞.客户端关闭连接等问题,这些问题均是由于客户端连接混乱造成. 同时,单线程的天性决定,高并发对同一个键的操作会

  • C#请求唯一性校验支持高并发的实现方法

    使用场景描述: 网络请求中经常会遇到发送的请求,服务端响应是成功的,但是返回的时候出现网络故障,导致客户端无法接收到请求结果,那么客户端程序可能判断为网络故障,而重复发送同一个请求.当然如果接口中定义了请求结果查询接口,那么这种重复会相对少一些.特别是交易类的数据,这种操作更是需要避免重复发送请求.另外一种情况是用户过于快速的点击界面按钮,产生连续的相同内容请求,那么后端也需要进行过滤,这种一般出现在系统对接上,无法去控制第三方系统的业务逻辑,需要从自身业务逻辑里面去限定. 其他需求描述: 这类

  • java的多线程高并发详解

    1.JMM数据原子操作 read(读取)∶从主内存读取数据 load(载入):将主内存读取到的数据写入工作内存 use(使用):从工作内存读取数据来计算 assign(赋值):将计算好的值重新赋值到工作内存中 store(存储):将工作内存数据写入主内存 write(写入):将store过去的变量值赋值给主内存中的变量 lock(锁定):将主内存变量加锁,标识为线程独占状态 unlock(解锁):将主内存变量解锁,解锁后其他线程可以锁定该变量 2.来看volatile关键字 (1)启动两个线程

  • golang高并发限流操作 ping / telnet

    需求 当需要同时ping/telnet多个ip时,可以通过引入ping包/telnet包实现,也可以通过go调用cmd命令实现,不过后者调用效率较差,所以这里选择ping包和telnet包 还有就是高并发的问题,可以通过shell脚本或者go实现高并发,所以我选择的用go自带的协程实现,但是如果要同时处理1000+个ip,考虑到机器的性能,需要ratelimit控制开辟的go协程数量,这里主要写一下我的建议和淌过的坑 ping 参考链接: https://github.com/sparrc/go

  • Tomcat+Mysql高并发配置优化讲解

    1.Tomcat优化配置 (1)更改Tomcat的catalina.bat 将java变成server模式,增大jvm的内存,在文件开始位置增加 setJAVA_OPTS=-server -Xms1024m -Xmx2048m -Xss512K -XX:PermSize=128m-XX:MaxPermSize=256m setCATALINA_OPTS=-server -Xms512m -Xmx512m 如下图: Xms:初始内存 Xmx:最大内存 (2)更改Tomcat的Server.xml

  • Java进阶之高并发核心Selector详解

    一.Selector设计 笔者下载得是openjdk8的源码, 画出类图 比较清晰得看到,openjdk中Selector的实现是SelectorImpl,然后SelectorImpl又将职责委托给了具体的平台,比如图中框出的 linux2.6以后才有的EpollSelectorImpl Windows平台是WindowsSelectorImpl MacOSX平台是KQueueSelectorImpl 从名字也可以猜到,openjdk肯定在底层还是用epoll,kqueue,iocp这些技术来实

  • 如何理解软件系统的高并发

    概述 当前,数字化在给企业带来业务创新,推动企业高速发展的同时,也给企业的IT软件系统带来了严峻的挑战.面对流量高峰,不同的企业是如何通过技术手段解决高并发难题的呢? 引言 软件系统有三个追求:高性能.高并发.高可用,俗称三高.三者既有区别也有联系,门门道道很多,全面讨论需要三天三夜,本篇讨论高并发. 高并发(High Concurrency).并发是操作系统领域的一个概念,指的是一段时间内多任务流交替执行的现象,后来这个概念被泛化,高并发用来指大流量.高请求的业务情景,比如春运抢票,电商双十一

  • Nodejs探秘之深入理解单线程实现高并发原理

    前言 从Node.js进入我们的视野时,我们所知道的它就由这些关键字组成 事件驱动.非阻塞I/O.高效.轻量,它在官网中也是这么描述自己的. Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient. 于是在我们刚接触Node

  • golang高并发的深入理解

    前言 GO语言在WEB开发领域中的使用越来越广泛,Hired 发布的<2019 软件工程师状态>报告中指出,具有 Go 经验的候选人是迄今为止最具吸引力的.平均每位求职者会收到9 份面试邀请. 想学习go,最基础的就要理解go是怎么做到高并发的. 那么什么是高并发? 高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求. 严格意义上说,单核的CPU是没法做到并行的,只有多核的CPU才能做到严格意义上的并行

  • Java 高并发编程之最实用的任务执行架构设计建议收藏

    目录 前言 1.业务架构 2.技术架构 3.物理架构 高并发任务执行架构 需求场景 业务架构设计 技术架构设计 初始设计 演化阶段一 演化阶段二 演化阶段三 代码设计 总结 前言 随着互联网与软件的发展,除了程序员,架构师也是越来越火的职业.他们伴随着项目的整个生命过程,他们更像是传统工业的设计师,将项目当做生命一般细心雕琢. 目前对于项目架构而言,基本都会需要设计的几个架构. 1.业务架构 项目或者产品的市场定位.需求范围.作用场景都是需要在项目启动初期进行系统性分析的.在设计业务架构中,架构

  • 如何利用Golang写出高并发代码详解

    前言 之前一直对Golang如何处理高并发http请求的一头雾水,这几天也查了很多相关博客,似懂非懂,不知道具体代码怎么写 下午偶然在开发者头条APP上看到一篇国外技术人员的一篇文章用Golang处理每分钟百万级请求,看完文章中的代码,自己写了一遍代码,下面自己写下自己的体会 核心要点 将请求放入队列,通过一定数量(例如CPU核心数)goroutine组成一个worker池(pool),workder池中的worker读取队列执行任务 实例代码 以下代码笔者根据自己的理解进行了简化,主要是表达出

  • 详解node单线程实现高并发原理与node异步I/O

    一.node单线程实现高并发原理 众所周知nodejs是单线程且支持高并发的脚本语言.可为什么单线程的nodejs可以支持高并发呢?很多人都不明白其原理,下面我来谈谈我的理解: 1. node的优点:I/O密集型处理是node的强项,因为node的I/O请求都是异步的(如:sql查询请求.文件流操作操作请求.http请求...) a. 什么是异步? 异步:发出操作指令,然后就可以去做别的事情了,所有操作完成后再执行回调 异步的实现原理: // 第一步:定义变量 let a = 1; // 第二步

  • 大数据量高并发的数据库优化详解

    如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 一.数据库结构的设计 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须

  • Java常见面试题之多线程和高并发详解

    volatile 对 volatile的理解 volatile 是一种轻量级的同步机制. 保证数据可见性 不保证原子性 禁止指令重排序 JMM JMM(Java 内存模型)是一种抽象的概念,描述了一组规则或规范,定义了程序中各个变量的访问方式. JVM运行程序的实体是线程,每个线程创建时 JVM 都会为其创建一个工作内存,是线程的私有数据区域.JMM中规定所有变量都存储在主内存,主内存是共享内存.线程对变量的操作在工作内存中进行,首先将变量从主内存拷贝到工作内存,操作完成后写会主内存.不同线程间

  • PHP使用文件锁解决高并发问题示例

    本文实例讲述了PHP使用文件锁解决高并发问题.分享给大家供大家参考,具体如下: 新建一个.txt文件,文件中什么都不用写. [一].阻塞(等待)模式:(只要有其他进程已经加锁文件,当前进程会一直等其他进程解锁文件) <?php //连接数据库 $con=mysqli_connect("192.168.2.186","root","root","test"); //查询商品数量是否大于0,大于0才能下单,并减少库存 $fp

  • 高并发系统的限流详解及实现

    在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流.本文结合作者的一些经验介绍限流的相关概念.算法和常规的实现方式. 缓存 缓存比较好理解,在大型高并发系统中,如果没有缓存数据库将分分钟被爆,系统也会瞬间瘫痪.使用缓存不单单能够提升系统访问速度.提高并发访问量,也是保护数据库.保护系统的有效方式.大型网站一般主要是"读",缓存的使用很容易被想到.在大型"写"系统中,缓存也常常扮演者非常重要的角色.比如累积一些数据批量写入,内存里面的缓存队列(生产消费),以及

随机推荐