解决Pytorch半精度浮点型网络训练的问题

用Pytorch1.0进行半精度浮点型网络训练需要注意下问题:

1、网络要在GPU上跑,模型和输入样本数据都要cuda().half()

2、模型参数转换为half型,不必索引到每层,直接model.cuda().half()即可

3、对于半精度模型,优化算法,Adam我在使用过程中,在某些参数的梯度为0的时候,更新权重后,梯度为零的权重变成了NAN,这非常奇怪,但是Adam算法对于全精度数据类型却没有这个问题。

另外,SGD算法对于半精度和全精度计算均没有问题。

还有一个问题是不知道是不是网络结构比较小的原因,使用半精度的训练速度还没有全精度快。这个值得后续进一步探索。

对于上面的这个问题,的确是网络很小的情况下,在1080Ti上半精度浮点型没有很明显的优势,但是当网络变大之后,半精度浮点型要比全精度浮点型要快。

但具体快多少和模型的大小以及输入样本大小有关系,我测试的是要快1/6,同时,半精度浮点型在占用内存上比较有优势,对于精度的影响尚未探究。

将网络再变大些,epoch的次数也增大,半精度和全精度的时间差就表现出来了,在训练的时候。

补充:pytorch半精度,混合精度,单精度训练的区别amp.initialize

看代码吧~

mixed_precision = True
try:  # Mixed precision training https://github.com/NVIDIA/apex
    from apex import amp
except:
    mixed_precision = False  # not installed

 model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=1)

为了帮助提高Pytorch的训练效率,英伟达提供了混合精度训练工具Apex。号称能够在不降低性能的情况下,将模型训练的速度提升2-4倍,训练显存消耗减少为之前的一半。

文档地址是:https://nvidia.github.io/apex/index.html

该 工具 提供了三个功能,amp、parallel和normalization。由于目前该工具还是0.1版本,功能还是很基础的,在最后一个normalization功能中只提供了LayerNorm层的复现,实际上在后续的使用过程中会发现,出现问题最多的是pytorch的BN层。

第二个工具是pytorch的分布式训练的复现,在文档中描述的是和pytorch中的实现等价,在代码中可以选择任意一个使用,实际使用过程中发现,在使用混合精度训练时,使用Apex复现的parallel工具,能避免一些bug。

默认训练方式是 单精度float32

import torch
model = torch.nn.Linear(D_in, D_out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
for img, label in dataloader:
 out = model(img)
 loss = LOSS(out, label)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

半精度 model(img.half())

import torch
model = torch.nn.Linear(D_in, D_out).half()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
for img, label in dataloader:
 out = model(img.half())
 loss = LOSS(out, label)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

接下来是混合精度的实现,这里主要用到Apex的amp工具。代码修改为:

加上这一句封装,

model, optimizer = amp.initialize(model, optimizer, opt_level=“O1”)
import torch
model = torch.nn.Linear(D_in, D_out).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

for img, label in dataloader:
 out = model(img)
 loss = LOSS(out, label)
 # loss.backward()
 with amp.scale_loss(loss, optimizer) as scaled_loss:
     scaled_loss.backward()

 optimizer.step()
 optimizer.zero_grad()

实际流程为:调用amp.initialize按照预定的opt_level对model和optimizer进行设置。在计算loss时使用amp.scale_loss进行回传。

需要注意以下几点:

在调用amp.initialize之前,模型需要放在GPU上,也就是需要调用cuda()或者to()。

在调用amp.initialize之前,模型不能调用任何分布式设置函数。

此时输入数据不需要在转换为半精度。

在使用混合精度进行计算时,最关键的参数是opt_level。他一共含有四种设置值:‘00',‘01',‘02',‘03'。实际上整个amp.initialize的输入参数很多:

但是在实际使用过程中发现,设置opt_level即可,这也是文档中例子的使用方法,甚至在不同的opt_level设置条件下,其他的参数会变成无效。(已知BUG:使用‘01'时设置keep_batchnorm_fp32的值会报错)

概括起来:

00相当于原始的单精度训练。01在大部分计算时采用半精度,但是所有的模型参数依然保持单精度,对于少数单精度较好的计算(如softmax)依然保持单精度。02相比于01,将模型参数也变为半精度。

03基本等于最开始实验的全半精度的运算。值得一提的是,不论在优化过程中,模型是否采用半精度,保存下来的模型均为单精度模型,能够保证模型在其他应用中的正常使用。这也是Apex的一大卖点。

在Pytorch中,BN层分为train和eval两种操作。

实现时若为单精度网络,会调用CUDNN进行计算加速。常规训练过程中BN层会被设为train。Apex优化了这种情况,通过设置keep_batchnorm_fp32参数,能够保证此时BN层使用CUDNN进行计算,达到最好的计算速度。

但是在一些fine tunning场景下,BN层会被设为eval(我的模型就是这种情况)。此时keep_batchnorm_fp32的设置并不起作用,训练会产生数据类型不正确的bug。此时需要人为的将所有BN层设置为半精度,这样将不能使用CUDNN加速。

一个设置的参考代码如下:

def fix_bn(m):
 classname = m.__class__.__name__
    if classname.find('BatchNorm') != -1:
     m.eval().half()

model.apply(fix_bn)

实际测试下来,最后的模型准确度上感觉差别不大,可能有轻微下降;时间上变化不大,这可能会因不同的模型有差别;显存开销上确实有很大的降低。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch保存模型用于测试和用于继续训练的区别详解

    保存模型 保存模型仅仅是为了测试的时候,只需要 torch.save(model.state_dict, path) path 为保存的路径 但是有时候模型及数据太多,难以一次性训练完的时候,而且用的还是 Adam优化器的时候, 一定要保存好训练的优化器参数以及epoch state = { 'model': model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch': epoch } torch.save(state, pat

  • PyTorch中 tensor.detach() 和 tensor.data 的区别详解

    PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 . .detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候. 举例: ten

  • 在Pytorch中计算卷积方法的区别详解(conv2d的区别)

    在二维矩阵间的运算: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 对由多个特征平面组成的输入信号进行2D的卷积操作.详解 torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

  • 解决Pytorch半精度浮点型网络训练的问题

    用Pytorch1.0进行半精度浮点型网络训练需要注意下问题: 1.网络要在GPU上跑,模型和输入样本数据都要cuda().half() 2.模型参数转换为half型,不必索引到每层,直接model.cuda().half()即可 3.对于半精度模型,优化算法,Adam我在使用过程中,在某些参数的梯度为0的时候,更新权重后,梯度为零的权重变成了NAN,这非常奇怪,但是Adam算法对于全精度数据类型却没有这个问题. 另外,SGD算法对于半精度和全精度计算均没有问题. 还有一个问题是不知道是不是网络

  • pytorch 使用半精度模型部署的操作

    背景 pytorch作为深度学习的计算框架正得到越来越多的应用. 我们除了在模型训练阶段应用外,最近也把pytorch应用在了部署上. 在部署时,为了减少计算量,可以考虑使用16位浮点模型,而训练时涉及到梯度计算,需要使用32位浮点,这种精度的不一致经过测试,模型性能下降有限,可以接受. 但是推断时计算量可以降低一半,同等计算资源下,并发度可提升近一倍 具体方法 在pytorch中,一般模型定义都继承torch.nn.Moudle,torch.nn.Module基类的half()方法会把所有参数

  • 解决Pytorch训练过程中loss不下降的问题

    在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题.出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等.不过除了这些常规的原因,还有一种难以发现的原因:在计算loss时数据维数不匹配. 下面是我的代码: loss_function = torch.nn.MSE_loss() optimizer.zero_grad() output = model(x_train) loss = loss_function(output, y_train)

  • 解决Pytorch 加载训练好的模型 遇到的error问题

    这是一个非常愚蠢的错误 debug的时候要好好看error信息 提醒自己切记好好对待error!切记!切记! -----------------------分割线---------------- pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令 #保存整个网络和参数 torch.save(your_net, 'save_name.pkl') #加载保存的模型 net = torch.load('save_name.pkl') 因为我比较懒我就想直接把整个网络都保存下来,然

  • 解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题

    背景 在公司用多卡训练模型,得到权值文件后保存,然后回到实验室,没有多卡的环境,用单卡训练,加载模型时出错,因为单卡机器上,没有使用DataParallel来加载模型,所以会出现加载错误. 原因 DataParallel包装的模型在保存时,权值参数前面会带有module字符,然而自己在单卡环境下,没有用DataParallel包装的模型权值参数不带module.本质上保存的权值文件是一个有序字典. 解决方法 1.在单卡环境下,用DataParallel包装模型. 2.自己重写Load函数,灵活.

  • 解决Pytorch 训练与测试时爆显存(out of memory)的问题

    Pytorch 训练时有时候会因为加载的东西过多而爆显存,有些时候这种情况还可以使用cuda的清理技术进行修整,当然如果模型实在太大,那也没办法. 使用torch.cuda.empty_cache()删除一些不需要的变量代码示例如下: try: output = model(input) except RuntimeError as exception: if "out of memory" in str(exception): print("WARNING: out of

  • 解决pytorch 交叉熵损失输出为负数的问题

    网络训练中,loss曲线非常奇怪 交叉熵怎么会有负数. 经过排查,交叉熵不是有个负对数吗,当网络输出的概率是0-1时,正数.可当网络输出大于1的数,就有可能变成负数. 所以加上一行就行了 out1 = F.softmax(out1, dim=1) 补充知识:在pytorch框架下,训练model过程中,loss=nan问题时该怎么解决? 当我在UCF-101数据集训练alexnet时,epoch设为100,跑到三十多个epoch时,出现了loss=nan问题,当时是一脸懵逼,在查阅资料后,我通过

  • 解决pytorch报错:AssertionError: Invalid device id的问题

    在服务器上训练的网络放到本地台式机进行infer,结果出现报错: AssertionError: Invalid device id 仔细检查后发现原来服务器有多个GPU,当时开启了两个进行加速运算. net1 = nn.DataParallel(net1, device_ids=[0, 1]) 而本地台式机只有一个GPU,调用数量超出所以报错. 改为 net1 = nn.DataParallel(net1, device_ids=[0]) 问题解决. 以上这篇解决pytorch报错:Asser

  • PyTorch详解经典网络ResNet实现流程

    目录 简述 残差结构 18-layer 实现 在数据集训练 简述 GoogleNet 和 VGG 等网络证明了,更深度的网络可以抽象出表达能力更强的特征,进而获得更强的分类能力.在深度网络中,随之网络深度的增加,每层输出的特征图分辨率主要是高和宽越来越小,而深度逐渐增加. 深度的增加理论上能够提升网络的表达能力,但是对于优化来说就会产生梯度消失的问题.在深度网络中,反向传播时,梯度从输出端向数据端逐层传播,传播过程中,梯度的累乘使得近数据段接近0值,使得网络的训练失效. 为了解决梯度消失问题,可

  • PyTorch实现更新部分网络,其他不更新

    torch.Tensor.detach()的使用 detach()的官方说明如下: Returns a new Tensor, detached from the current graph. The result will never require gradient. 假设有模型A和模型B,我们需要将A的输出作为B的输入,但训练时我们只训练模型B. 那么可以这样做: input_B = output_A.detach() 它可以使两个计算图的梯度传递断开,从而实现我们所需的功能. 以上这篇P

随机推荐