Java如何使用ReentrantLock实现长轮询

Java代码

1. ReentrantLock

加锁阻塞,一个condition对应一个线程,以便于唤醒时使用该condition一定会唤醒该线程

/**
     * 获取探测点数据,长轮询实现
     * @param messageId
     * @return
     */
    public JSONObject getToutData(String messageId) {
        Message message = toutMessageCache.get(messageId);
        if (message == null) {
            // 等待
            lock.lock();
            try {
                Condition condition = lock.newCondition();
                conditionMap.put(messageId + "_data", condition);
                condition.await(CONNECTION_HOLD_TIMEOUT, TimeUnit.SECONDS); // 等待60s
            } catch (InterruptedException e) {
                // 等待超时, do nothing
            } finally {
                lock.unlock();
            }
        }

        // 再次尝试获取
        message = toutMessageCache.get(messageId);
        if (message == null) {
            // 如果还没有, 返回空对象
            return null;
        }

        byte[] bytes = message.getDataBytes();
        if (bytes == null) {
            return null;
        }
        String resStr = new String(bytes, StandardCharsets.UTF_8);
//        log.info("resStr: {}", resStr);
        JSONObject resObj;
        try {
            resObj = new JSONObject(resStr);
            resObj.put("invokeTime", DateUtil.format(new Date(resObj.getLong("invokeTime")), DatePattern.NORM_DATETIME_MS_PATTERN));
        } catch (Exception e) {
            resObj = new JSONObject();
        }

        return resObj;
    }

2. 回调

当异步数据返回,使用上一步的condition唤醒线程

public void callback(Message message) {
    String messageId = message.getId();
    toutMessageCache.put(message.getId(), message);
    String messageDataId = messageId + "_data";
    if (conditionMap.containsKey(messageDataId)) {
        lock.lock();
        try {
            Condition condition = conditionMap.get(messageDataId);
            condition.signal();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
            conditionMap.remove(messageDataId);
        }
    }
}

3. 唤醒

执行回调操作

public void distribute(Message message, ChannelHandlerContext ctx) {
   MessageType messageType = message.getMessageType();
   switch (messageType) {
       case TOUT_DATA_RESPONSE:
           // 数据响应
           toutService.callback(message);
           break;
   }

}

4. 调用

调用时,判断返回的值是否为空,如果为空,与前端约定,当返回该状态值时,应再次发起相同请求

/**
* 获取探测数据(使用长轮询实现)
* @param linkId
* @return
*/
@GetMapping("/data")
public ResultVO getToutData(String linkId) {
   JSONObject resObj = toutService.getToutData(linkId);
   if (resObj == null || resObj.isEmpty()) {
       return ResultVOUtil.error(ResultEnum.NO_MESSAGE_HOLD_CONNECTION);
   }
   return ResultVOUtil.success(resObj);
}

5.前端实现

简单使用递归实现了当数据返回无效时再次发起请求

let that = this
function getData() {
     if (toutStatus === statusEnum.start) {
         getToutData({
             linkId
         }).then(res => {
             if (res.code === ERROR_CODE_OK) {
                 that.toutData = res.data
                 toutStatus = statusEnum.resData
                 that._btnStatus()
             } else {
                 getData()
             }
         })
     }
 }

 // 递归循环调用
 getData()

以上就是如何使用ReentrantLock实现长轮询的详细内容,更多关于ReentrantLock长轮询的资料请关注我们其它相关文章!

(0)

相关推荐

  • 彻底了解java中ReentrantLock和AQS的源码

    一.前言 首先在聊ReentrantLock之前,我们需要知道整个JUC的并发同步的基石,currrent里面所有的共享变量都是由volatile修饰的,我们知道volatile的语义有2大特点,可见性以及防止重排序(内存屏障,volatie写与volatile读) 1.当第二个操作为volatile写操做时,不管第一个操作是什么(普通读写或者volatile读写),都不能进行重排序.这个规则确保volatile写之前的所有操作都不会被重排序到volatile之后; 2.当第一个操作为volat

  • 详解Java中的ReentrantLock锁

    ReentrantLock锁 ReentrantLock是Java中常用的锁,属于乐观锁类型,多线程并发情况下.能保证共享数据安全性,线程间有序性 ReentrantLock通过原子操作和阻塞实现锁原理,一般使用lock获取锁,unlock释放锁, 下面说一下锁的基本使用和底层基本实现原理,lock和unlock底层 lock的时候可能被其他线程获得所,那么此线程会阻塞自己,关键原理底层用到Unsafe类的API: CAS和park 使用 java.util.concurrent.locks.R

  • Java多线程中ReentrantLock与Condition详解

    一.ReentrantLock类 1.1什么是reentrantlock java.util.concurrent.lock中的Lock框架是锁定的一个抽象,它允许把锁定的实现作为Java类,而不是作为语言的特性来实现.这就为Lock的多种实现留下了空间,各种实现可能有不同的调度算法.性能特性或者锁定语义.ReentrantLock类实现了Lock,它拥有与synchronized相同的并发性和内存语义,但是添加了类似锁投票.定时锁等候和可中断锁等候的一些特性.此外,它还提供了在激烈争用情况下更

  • Java多线程 ReentrantLock互斥锁详解

    加锁和解锁 我们来看下ReentrantLock的基本用法 ThreadDomain35类 public class ThreadDomain35 { private Lock lock = new ReentrantLock(); public void testMethod() { try { lock.lock(); for (int i = 0; i < 2; i++) { System.out.println("ThreadName = " + Thread.curre

  • 详解Java多线程编程中互斥锁ReentrantLock类的用法

    0.关于互斥锁 所谓互斥锁, 指的是一次最多只能有一个线程持有的锁. 在jdk1.5之前, 我们通常使用synchronized机制控制多个线程对共享资源的访问. 而现在, Lock提供了比synchronized机制更广泛的锁定操作, Lock和synchronized机制的主要区别: synchronized机制提供了对与每个对象相关的隐式监视器锁的访问, 并强制所有锁获取和释放均要出现在一个块结构中, 当获取了多个锁时, 它们必须以相反的顺序释放. synchronized机制对锁的释放是

  • 详解java并发之重入锁-ReentrantLock

    前言 目前主流的锁有两种,一种是synchronized,另一种就是ReentrantLock,JDK优化到现在目前为止synchronized的性能已经和重入锁不分伯仲了,但是重入锁的功能和灵活性要比这个关键字多的多,所以重入锁是可以完全替代synchronized关键字的.下面就来介绍这个重入锁. 正文 ReentrantLock重入锁是Lock接口里最重要的实现,也是在实际开发中应用最多的一个,我这篇文章更接近实际开发的应用场景,为开发者提供直接上手应用.所以不是所有方法我都讲解,有些冷门

  • Java多线程之深入理解ReentrantLock

    前言 保证线程安全的方式有很多,比如CAS操作.synchronized.原子类.volatile保证可见性和ReentrantLock等,这篇文章我们主要探讨ReentrantLock的相关内容.本文基于JDK1.8讲述ReentrantLock. 一.可重入锁 所谓可重入锁,即一个线程已经获得了某个锁,当这个线程要再次获取这个锁时,依然可以获取成功,不会发生死锁的情况.synchronized就是一个可重入锁,除此之外,JDK提供的ReentrantLock也是一种可重入锁. 二.Reent

  • Java线程安全解决方案(synchronized,ReentrantLock,Atomic)

    线程安全解决方案 synchronized,ReentrantLock,Atomic 使用场景描述 在实际开发过程中如果服务量,请求频繁,就会经常碰见并发,这时候不做处理就会出现很多非法数据.这时候就需要解决线程安全的问题,这时候就可以使用java当中的锁机制.常用有java关键synchronized.可重入锁ReentrantLock,还有并发包下的Atomic 或者Concurrent的安全类型. synchronized使用场景: 在资源竞争不是很激烈的情况下,偶尔出现并发,需要同步的情

  • Java如何使用ReentrantLock实现长轮询

    Java代码 1. ReentrantLock 加锁阻塞,一个condition对应一个线程,以便于唤醒时使用该condition一定会唤醒该线程 /** * 获取探测点数据,长轮询实现 * @param messageId * @return */ public JSONObject getToutData(String messageId) { Message message = toutMessageCache.get(messageId); if (message == null) {

  • Java实现一个简单的长轮询的示例代码

    目录 分析一下长轮询的实现方式 长轮询与短轮询 配置中心长轮询设计 配置中心长轮询实现 客户端实现 服务端实现 分析一下长轮询的实现方式 现在各大中间件都使用了长轮询的数据交互方式,目前比较流行的例如Nacos的配置中心,RocketMQ Pull(拉模式)消息等,它们都是采用了长轮询方的式实现.就例如Nacos的配置中心,如何做到服务端感知配置变化实时推送给客户端的呢? 长轮询与短轮询 说到长轮询,肯定存在和它相对立的,我们暂且叫它短轮询吧,我们简单介绍一下短轮询: 短轮询也是拉模式.是指不管

  • Java servlet通过事件驱动进行高性能长轮询详解

    目录 servlet3.0的异步原理 使用servlet3.0实现长轮询 长轮询实现 servlet3.0的异步原理 servlet基础就不做介绍了,这里就介绍servlet3.0的一个重要的新特性:异步. servlet3.0原理图: tomcat接收到客户端的请求后会将请求AsyncContext交给业务线程,这样tomcat工作线程就能释放出来处理其它请求的连接. 业务线程池接收到AsyncContext后,就可以处理请求业务,完成业务逻辑后,根据AsyncContext获取respons

  • java 常规轮询长轮询Long polling实现示例详解

    目录 正文 常规轮询 长轮询 正文 长轮询是与服务器保持持久连接的最简单的方式,它不使用任何特定的协议,例如 WebSocket 或者 Server Sent Event. 它很容易实现,在很多场景下也很好用. 常规轮询 从服务器获取新信息的最简单的方式是定期轮询.也就是说,定期向服务器发出请求:“你好,我在这儿,你有关于我的任何信息吗?”例如,每 10 秒一次. 作为响应,服务器首先通知自己,客户端处于在线状态,然后 —— 发送目前为止的消息包. 这可行,但是也有些缺点: 消息传递的延迟最多为

  • JS实现websocket长轮询实时消息提示的效果

    效果图如下: 参考代码如下: jsp代码: <%@ page contentType="text/html;charset=UTF-8" language="java"%> <div class="page-header navbar navbar-fixed-top"> <div class="page-header-inner"> <div class="page-log

  • 基于springboot 长轮询的实现操作

    springboot 长轮询实现 基于 @EnableAsync , @Sync @SpringBootApplication @EnableAsync public class DemoApplication { public static void main(String[] args) { SpringApplication.run(DemoApplication.class, args); } } @RequestMapping("/async") @RestControlle

  • jquery与php结合实现AJAX长轮询(LongPoll)

    HTTP是无状态.单向的协议,用户只能够通过客服端向服务器发送请求并由服务器处理发回一个响应.若要实现聊天室.WEBQQ.在线客服.邮箱等这些即时通讯的应用,就要用到" 服务器推送技术(Comet)". 传统的AJAX轮询方式,客服端以用户定义的时间间隔去服务器上查询最新的数据.种这种拉取数据的方式需要很短的时间间隔才能保证数据的精确度,但太短的时间间隔客服端会对服务器在短时间内发送出多个请求. 反转AJAX,就是所谓的长轮询或者COMET.服务器与客服端需要保持一条长时间的请求,它使

  • .Net MVC实现长轮询

    什么是长轮询? 长轮询是"服务器推"技术实现方式的一种,可以将服务端发生的变化实时传送到客户端而无须客户端频繁的地刷新.发送请求. 长轮询原理? 客户端向服务器发送Ajax请求,服务器接收到请求后,保持连接不返回消息,直到进行相关处理完毕后才返回响应信息并关闭连接,客户端接收到响应信息后,进行相关处理,处理完毕后再想服务器发送新的请求. 长轮询的应用场景? 长轮询常应用于Web及时通讯.监控.即时报价系统等需要实时将服务端的变化发送到客户端的场景. 长轮询的优缺点? 优点:无消息时不会

  • Thinkphp结合AJAX长轮询实现PC与APP推送详解

    前言 本文主要给大家介绍的关于Thinkphp结合AJAX长轮询实现PC与APP推送的相关内容,分享出来供大家参考学习,话不多说,来一起看看详细的介绍. 实现逻辑 某个操作(比如新建一条公告)后,触发同时推送消息给APP或是移动WEB的所有用户或指定用户. 不论性能,总还是有人会用到吧,实现如下(基于Thinkphp5消息推送): PHP长轮询 /* * long轮询 API查询接口 */ public function id_log() { if (request()->isPost()) {

  • javascript和jQuery实现网页实时聊天的ajax长轮询

    介绍 大家都知道,HTTP协议是一个属于应用层的面向对象的协议,HTTP 协议一共有五大特点: 1.支持客户/服务器模式; 2.简单快速; 3.灵活; 4.无连接; 5.无状态. 所以一次的请求都是一个单独的事件,和前后都没有联系.所以我们在解决网页实时聊天时就遇到一个问题,如何保证与服务器的长时间联系,从而源源不段地获取信息. 一直以来的方式无非有这么几种: 1.长连接,即服务器端不断开联系,PHP服务器端用ob系列函数来不停的读取输出,但是相当耗费服务器资源. 2.Flash socket,

随机推荐